
Computers & Operations Research 160 (2023) 106373

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

A vertex weighting-based double-tabu search algorithm for the classical
𝑝-center problem
Qingyun Zhang a, Zhipeng Lü a, Zhouxing Su a,∗, Chumin Li b

a School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
b MIS, University of Picardie Jules Verne, Amiens 80090, France

A R T I C L E I N F O

Keywords:
p-Center problem
Location problem
Tabu search
Solution-based tabu strategy
Vertex weighting

A B S T R A C T

The 𝑝-center problem, which is NP-hard, aims to select 𝑝 centers from a set of candidates to serve all clients
while minimizing the maximum distance between each client and its assigned center. To solve this challenging
optimization problem, we transform the 𝑝-center problem into a series of decision subproblems, and propose
a vertex weighting-based double-tabu search (VWDT) algorithm. It integrates a vertex weighting strategy and
a double-tabu search which combines both solution-based and attribute-based tabu strategies to help the
search to escape from the local optima trap. Computational experiments on totally 510 public instances in
the literature show that VWDT is highly competitive comparing to the state-of-the-art algorithms. Specifically,
VWDT improves the previous best known results for 84 large instances and matches the best results for all
the remaining ones. Apart from the improvements in solution quality, VWDT is much faster than other state-
of-the-art algorithms in the literature, especially on some large instances. Furthermore, we perform additional
experiments to analyze the impact of the key components to VWDT, such as the vertex weighting and the
double-tabu search strategy.
1. Introduction

The 𝑝-center problem is a challenging optimization problem which
has been proven to be NP-hard (Kariv and Hakimi, 1979). It requires
locating 𝑝 centers from a set of candidate centers to provide services
for a set of clients, where each client seeks one of its closest centers
for service. There is a serving arc between each client and its service
provider. The objective of the 𝑝-center problem is to minimize the
longest serving arc between a client and its service provider, where we
refer to the length of the longest serving arc as the covering radius.

The 𝑝-center problem widely exists in real-world applications. For
example, it can formulate important problems in telecommunication
such as the wireless sensor network optimization (Liao and Ting, 2018;
Zhang et al., 2021). In the context of city planning, the 𝑝-center
problem can formulate the problems of determining the locations of
emergency centers (Toregas et al., 1971), hospitals (Hakimi, 1964),
banks (Xia et al., 2010), and charging stations (Rigas et al., 2018)
to serve the communities. Similarly, the 𝑝-center problem can also
model production plants location and warehouses distribution in the
supply-chain management (Amiri, 2006).

Tabu search is an optimization algorithm originally introduced
by Glover (1989). It incorporates the tabu strategy into the local

∗ Corresponding author.
E-mail addresses: qingyun_zhang@hust.edu.cn (Q. Zhang), zhipeng.lv@hust.edu.cn (Z. Lü), suzhouxing@hust.edu.cn (Z. Su), chu-min.li@u-picardie.fr

(C. Li).

search framework in order to escape from the local optima. Tradi-
tional attribute-based tabu strategy usually records limited features
of recently visited solutions, and its performance may be sensitive to
a parameter called tabu tenure. Recently, solution-based tabu search
methods have attracted much attention and have been used to solve
many combinatorial problems, such as minimum differential disper-
sion problem (Wang et al., 2017), 0–1 multidimensional knapsack
problem (Lai et al., 2018) and maximum min-sum dispersion prob-
lem (Wang et al., 2021). The solution-based tabu strategy tracks the
search trajectories in a more systematic way by recording the visited
complete solution vectors. The weighting technique is another powerful
technique for jumping out of local optima trap which is very flexible
and adaptive. It is similar to the guided local search (Voudouris and
Tsang, 2003) and has been successfully applied to many problems,
such as set covering problem (Gao et al., 2015), minimum vertex cover
problem (Cai et al., 2011, 2013), and satisfiability problem (Luo et al.,
2012).

In this paper, we present a metaheuristic algorithm, called vertex
weighting-based double-tabu search (VWDT) algorithm for solving the
𝑝-center problem. VWDT incorporates a vertex weighting technique and
a tabu search which integrates both solution-based and attribute-based
vailable online 9 August 2023
305-0548/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cor.2023.106373
Received 20 October 2022; Received in revised form 3 August 2023; Accepted 5 A
ugust 2023

https://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:qingyun_zhang@hust.edu.cn
mailto:zhipeng.lv@hust.edu.cn
mailto:suzhouxing@hust.edu.cn
mailto:chu-min.li@u-picardie.fr
https://doi.org/10.1016/j.cor.2023.106373
https://doi.org/10.1016/j.cor.2023.106373
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2023.106373&domain=pdf

Computers and Operations Research 160 (2023) 106373Q. Zhang et al.

c
t
S
e
d
t
s

c
a
a
G
2

tabu strategies. Rather than directly tackling the original optimization
problem as the previous metaheuristics, VWDT works on the decision
version to solve the 𝑝-center problem. Specifically, we transform the 𝑝-
center problem into a series of decision subproblems. That is to say, for
each possible covering radius 𝑟, we check if all vertices can be covered
by a center within the covering radius 𝑟. It is equivalent to solving a
series of maximal covering location subproblems (Church and ReVelle,
1974). In fact, by utilizing the lower and upper bounds of the original
problem, the number of subproblems will be relatively small and we
can solve them in parallel due to their independence from each other.
Tested on three sets of totally 174 classical benchmark instances and
one set of 336 massive instances of the 𝑝-center problem, VWDT im-
proves the best known results on 84 instances and matches the records
on the remaining 420 ones. Moreover, the computational time for
reaching these results is much shorter than that of the state-of-the-art
reference algorithms in the literature.

A preliminary version of this algorithm named VWTS was proposed
in Zhang et al. (2020), which was extended and improved here in the
following aspects:

1. We adopt a reduction method to simplify instances and further
improve the search efficiency of the algorithm.

2. In addition to the original vertex weighting technique, by com-
bining solution-based and attribute-based tabu strategies, we
use a new hybrid double-tabu search framework to replace the
original simple tabu strategy to achieve a better balance between
intensification and diversification and prevent possible cycles
during the search.

3. We use an age strategy to break ties when there exist multiple
choices of equal neighboring solutions, which prefers to select
the sets that have not been moved into or out of the candidate
solution for a long time.

4. Our new improved algorithm is tested on larger instances used in
the literature with more than 200,000 vertices, while the largest
instance in Zhang et al. (2020) contains only 3038 vertices. Our
algorithm is able to improve the previous best known results for
84 instances on these large scale instances.

5. New best known results are obtained on 4 difficult instances
from pcb3038 and the computational efficiency has also been
significantly improved.

6. We conduct additional experimental analysis to show the signif-
icance of the key components of our algorithm.

The paper is outlined as follows. Section 2 reviews the previous
research work related to the 𝑝-center problem. Section 3 introduces the
definition and reformulations for the 𝑝-center problem. In Section 4,
the proposed vertex weighting-based double-tabu search algorithm is
described. In Section 5, we present the computational experiments to
compare VWDT with the state-of-the-art algorithms in the literature.
Section 6 analyzes and compares some essential ingredients of the
algorithm to show how they affect the performance of the algorithm.
Section 7 concludes the paper and presents future research directions.

2. Related works

As one of the most classical location problems introduced by Hakimi
(1964), the 𝑝-center problem has drawn much attention from academic
society in the last 50 years and various intelligent optimization algo-
rithms have been proposed. There are mainly three kinds of method-
ologies for the 𝑝-center problem, which are exact, approximation, and
metaheuristic algorithms.

Regarding the exact algorithms, a popular framework for solving
the 𝑝-center problem is to solve a series of minimum set covering
problems (Daskin, 2013). Minieka (1970) was among the first re-
searchers who use this approach to tackle the 𝑝-center problem. Specif-
ically, Minieka (1970) presented an iterative algorithm that solves a set
covering problem with the given radius at each iteration that verifies
2

whether all clients can be covered within the radius using no more
than 𝑝 centers. Daskin (2000) exploited the relationship between the
𝑝-center problem and the set covering problem, and solved the latter
one using Lagrangian relaxation. Ilhan et al. (2002) proposed a two-
phase algorithm. The first phase finds the best possible lower bound
by iteratively judging the feasibility of LP formulation in the given
radius. The second phase improves the obtained lower bound by solving
a series of integer programming (IP) models until the IP formulation
becomes feasible, i.e., a feasible covering radius where all clients are
covered is found. Elloumi et al. (2004) presented a new mixed-integer
programming (MIP) model for the 𝑝-center problem and a polynomial
algorithm for computing a tighter lower bound. They also proposed
an extension called fault-tolerant 𝑝-center problem. Calik and Tansel
(2013) introduced a new integer programming formulation and an
exact algorithm based on decomposition technique for solving the 𝑝-
enter problem, where a relaxation of the proposed formulation gives a
ighter lower bound than that in Elloumi et al. (2004). Al-Khedhairi and
alhi (2005) introduced some modifications to the algorithms of Ilhan
t al. (2002) and Daskin (2000) to reduce the number of ILP iterations
uring the search and the number of subproblems to be solved. Con-
ardo et al. (2019) proposed a row generation approach that iteratively
olves small covering subproblems of the 𝑝-center problem. Later, Liu

et al. (2020) proposed a method for solving the 𝑝-center problem via
set covering and SAT, which is the first SAT-based method for solving
the 𝑝-center problem. Based on the previous best solution obtained by
PBS (Pullan, 2008) and GRASP/PR (Yin et al., 2017), it improved the
best known results on 3 large-scale instances and proved the optimality
of the obtained solutions. Gaar and Sinnl (2022) presented a new
integer programming formulation that can be obtained by a projection
from the classical formulation of 𝑝-center problem, and solved it by
branch-and-cut method. The algorithms proposed in Contardo et al.
(2019), Liu et al. (2020), and Gaar and Sinnl (2022) are the best exact
algorithms for solving the 𝑝-center problem.

Besides the exact methods, a variety of approximation algorithms
have been proposed for solving the 𝑝-center problem in the last few
decades. Hochbaum and Shmoys (1985) presented a 2-approximation
algorithm for the 𝑝-center problem with triangle inequality. Martinich
(1988) used a vertex-closing approach to solve the 𝑝-center problem
and proposed several theorems for verifying optimal solutions during
the search. Initially, all centers are opened, and then 𝑛 − 𝑝 centers are
selected to be closed according to the optimization objective of the 𝑝-
enter problem. Garcia-Diaz et al. (2019) conducted an analytical study
nd experimental evaluation of the most representative approximation
lgorithms which are some 2-approximation (Sh Shmoys, 1995 and
on Gonzalez, 1985) and 3-approximation (CDS Garcia-Diaz et al.,
017) algorithms for the 𝑝-center problem.

Metaheuristic is an effective methodology for solving combinatorial
optimization problems. In the last few decades, many metaheuris-
tic algorithms for solving the 𝑝-center problem have been proposed.
Mladenović et al. (2003) presented a variable neighborhood search
(VNS), a multistart local search, and a chain substitution tabu search
metaheuristic for the 𝑝-center problem. They conducted experiments
on 40 𝑝-median (Mladenović et al., 2007) instances from the OR-
Library and 98 instances with up to 3038 vertices from TSPLIB. Caruso
et al. (2003) proposed Dominant, a metaheuristic algorithm, to solve
a series of set covering problems by predefined covering radius. Robič
and Mihelič (2005) introduced a polynomial time heuristic algorithm
for the minimum dominating set problem, which uses the so-called
scoring technique, to solve the vertex-restricted 𝑝-center problem. Pul-
lan (2008) presented a memetic algorithm, called PBS, which is a
population-based metaheuristic algorithm based on a local search pro-
cedure. By using phenotype crossover and directed mutation operators,
a population of elite initial solutions are generated and a local search al-
gorithm improves the solutions to local optima. Salhi and Al-Khedhairi
(2010) designed a three-level metaheuristic that combines VNS with

perturbation schemes, and integrated it into exact algorithms such

Computers and Operations Research 160 (2023) 106373Q. Zhang et al.

s

a
c
c
c

(

C
(
C
v
s
l
f
𝑝
T
{
s
b
t

t
𝑞
c
e
s
𝑟
{
a
r
t
(
(

d
o

as Daskin (2000) to solve the 𝑝-center problem. Irawan et al. (2016)
introduced a three-stages method with two meta-heuristics, which
combines VNS, exact method, and aggregation techniques for solving
large 𝑝-center problems. Yin et al. (2017) presented a GRASP/PR al-
gorithm for the 𝑝-center problem, which combines path-relinking with
greedy randomized adaptive search procedure (GRASP). It improves the
previous best known results for 10 large-scale instances. Ferone et al.
(2017) presented a new smart local search based on the critical vertex
concept, called GRASP+plateau-surfer, and embedded it into a GRASP
framework. Zhang et al. (2020) introduced a vertex weighting-based
tabu search algorithm, which is the best metaheuristic algorithm for
solving the 𝑝-center problem.

3. Problem description

The 𝑝-center problem is defined on an undirected complete graph
𝐺 = (𝑉 ,𝐸), where 𝑉 = {1, 2,… , 𝑛} is the vertex set and 𝐸 is the edge
et. The distance between each pair of vertices 𝑖 and 𝑗 is 𝑑𝑖𝑗 ∈ R+.

Each vertex 𝑖 ∈ 𝑉 corresponds to a client that requires services from
one of the 𝑝 centers, which should be selected from a set of candidate
centers 𝐶 ⊆ 𝑉 (usually 𝐶 = 𝑉). The solution can be defined as (𝒙, 𝒚, 𝑟).
In detail, 𝒙 = {𝑥𝑗 |𝑗 ∈ 𝐶} and 𝑥𝑗 is a decision variable which equals to 1
iff a candidate center 𝑗 ∈ 𝐶 is opened as a center. 𝒚 = {𝑦𝑖𝑗 |𝑖 ∈ 𝑉 , 𝑗 ∈ 𝐶}
nd 𝑦𝑖𝑗 is a binary variable, where 𝑦𝑖𝑗 = 1 iff vertex 𝑖 ∈ 𝑉 is served by
enter 𝑗 ∈ 𝐶. 𝑟 ∈ R+ is the length of the longest serving arc, i.e., the
overing radius. Based on the above notations, we can formulate the
lassical MIP model for the 𝑝-center problem (Daskin, 2013) as follows.

𝑃𝐶) min 𝑟, (1)

s.t.
∑

𝑗∈𝐶
𝑥𝑗 = 𝑝, (2)

∑

𝑗∈𝐶
𝑦𝑖𝑗 = 1,∀𝑖 ∈ 𝑉 , (3)

𝑦𝑖𝑗 ≤ 𝑥𝑗 ,∀𝑖 ∈ 𝑉 ,∀𝑗 ∈ 𝐶, (4)
∑

𝑗∈𝐶
𝑑𝑖𝑗𝑦𝑖𝑗 ≤ 𝑟,∀𝑖 ∈ 𝑉 , (5)

𝑥𝑗 , 𝑦𝑖𝑗 ∈ {0, 1}, 𝑟 ∈ R+,∀𝑖 ∈ 𝑉 ,∀𝑗 ∈ 𝐶. (6)

In model (𝑃𝐶), objective (1) aims to minimize the covering radius.
onstraint (2) enforces that there are 𝑝 opened centers. Constraints
3) ensure that each vertex must be served by exactly one center.
onstraints (4) restrict that only the opened centers can serve the
ertices. Constraints (5) make sure that the covering radius 𝑟 is not
horter than any serving arc. In the optimal solution, there will be at
east one equality among constraints (5), otherwise 𝑟 can be reduced
urther. This fact implies that the optimal covering radius for a specific
-center instance must be the same as the length of a certain edge 𝑑𝑖𝑗 .
hus, for an ordered list of distinct edge length 𝑅 = {𝑑𝑖𝑗 |𝑖 ∈ 𝑉 , 𝑗 ∈ 𝐶} =
𝑟1, 𝑟2,… , 𝑟𝑘} where 𝑟1 < 𝑟2 < ⋯ < 𝑟𝑘, we seek for the smallest rank 𝑞
uch that model (𝑃𝐶) is still feasible after adding a constraint 𝑟 ≤ 𝑟𝑞 ,
ut it becomes infeasible if we add constraint 𝑟 ≤ 𝑟𝑞−1. Then, such 𝑟𝑞 is
he optimal covering radius.

Based on the relationship between the maximal covering loca-
ion problem and the 𝑝-center problem, if we fix the edge length rank

of an instance, the 𝑝-center problem is equivalent to the maximal
overing location problem (Church and ReVelle, 1974). Specifically, for
ach candidate center 𝑗 ∈ 𝐶, let 𝑆𝑞

𝑗 = {𝑖 ∈ 𝑉 |𝑑𝑗𝑖 ≤ 𝑟𝑞} denotes the
et of vertices that can be served by candidate center 𝑗 within radius
𝑞 . We can obtain a maximal covering location problem instance 𝑆𝑞 =
𝑆𝑞
𝑗 |𝑗 ∈ 𝐶}. Then, if we can select 𝑝 sets out of 𝑆𝑞 whose union includes

ll vertices, we can derive that 𝑟𝑞 is an upper bound of the covering
adius in the original 𝑝-center problem, and vice versa. Therefore, if
he optimal edge length rank 𝑞 is known, we can reformulate model
𝑃𝐶) to the maximal covering location problem defined by Eqs. (7)–
10) (Daskin, 2000; Ilhan et al., 2002), where the meaning of each
3

ecision variable 𝑥𝑗 in model (𝑀𝐶𝐿𝑞) is identical to the corresponding
ne in model (𝑃𝐶), and 𝑢𝑖 is a binary variable where 𝑢𝑖 = 1 if vertex 𝑖

is not covered by any center.

(𝑀𝐶𝐿𝑞) min
∑

𝑖∈𝑉
𝑢𝑖, (7)

s.t.
∑

𝑗∈𝐶,𝑑𝑖𝑗≤𝑟𝑞

𝑥𝑗 ≥ 1 − 𝑢𝑖,∀𝑖 ∈ 𝑉 , (8)

∑

𝑗∈𝐶
𝑥𝑗 = 𝑝, (9)

𝑥𝑗 , 𝑢𝑖 ∈ {0, 1},∀𝑖 ∈ 𝑉 ,∀𝑗 ∈ 𝐶. (10)

Here, we adopt the equivalent objective of maximizing the number of
covered vertices, i.e., minimizing the number of uncovered vertices as
shown in objective function (7). Constraints (8) guarantee that each
uncovered vertex will be counted into the objective. Constraint (9)
enforces that there is exactly 𝑝 opened centers. In order to find the
optimal covering radius, we need to traverse the distinct edge length
list 𝑅 to examine each possible covering radius. For each 𝑟𝑞 , we judge
if there is a feasible solution for the 𝑝-center problem, i.e., there are 𝑝
sets that cover all vertices within the radius 𝑟𝑞 . We repeatedly choose
next 𝑞 until 𝑟𝑞 is invalid. Then, 𝑟𝑞+1 is the best solution for the original
problem.

4. Vertex weighting-based double-tabu search

4.1. General framework

Our VWDT algorithm starts from an upper bound 𝑟𝑞 obtained by
heuristics (e.g., PBS Pullan, 2008) for model (𝑃𝐶) under limited time,
and then solves models (𝑀𝐶𝐿𝑞−1), (𝑀𝐶𝐿𝑞−2), . . . , (𝑀𝐶𝐿1) in turn
until it fails to find a feasible solution within the given time limit.
Therefore, we will focus on the subroutine named VWDT𝑞 for solving
model (𝑀𝐶𝐿𝑞) with a given radius.

Algorithm 1 gives the main framework of VWDT𝑞 . After initializing
vectors and variables, as shown in lines 1–2, the proposed VWDT𝑞 starts
with an initial solution generated by a constructive heuristic algorithm
(line 3, Section 4.2), and the set of opened centers are recorded in 𝑋,
𝑋′ and 𝑋∗. Then, VWDT𝑞 iteratively searches for a better solution with
less uncovered vertices by a vertex weighting-based double-tabu search
procedure (lines 5–16). At each iteration, VWDT𝑞 first evaluates the
swap-based neighborhood of the current solution and records the best
neighborhood move (𝑖, 𝑗) in non-tabu status (line 6). Then, it makes
the best move which swaps in vertex 𝑖 and swaps out vertex 𝑗 from the
current center set (line 7). If the current solution 𝑋 is better than the
best solution 𝑋∗ found so far, the best solution is updated with 𝑋 (lines
8–9), where 𝑈 (𝑋) represents the set of vertices that are uncovered in
the current solution 𝑋. Otherwise, when the current solution falls into
a local optimum, i.e., the best move returned by function FindPair()
cannot cover more vertices (line 10), VWDT𝑞 will increase the weight
of each uncovered vertex (lines 11–12), where 𝛿 will be introduced in
Section 4.4. At the end of each iteration, the tabu lists and other data
structures will be updated (lines 14–15). Finally, once the time limit or
other user-specified termination condition is met, VWDT𝑞 terminates
and returns the best solution 𝑋∗ (line 17).

4.2. Initialization

The initialization consists of a reduction procedure and the con-
struction of the initial solution. First, some centers must be included
in the optimal solution. If a vertex is only covered by itself, then we
must pick the vertex to cover it. Apparently, such kind of vertices can
be fixed constantly as centers, and then we only need to choose 𝑝 − 𝑙
centers, where 𝑙 is the number of fixed centers.

Next, VWDT𝑞 employs a constructive heuristic for selecting 𝑝 centers

to form an initial solution 𝑋. Let 𝑗 denote the set of vertices that

Computers and Operations Research 160 (2023) 106373Q. Zhang et al.

𝑉
v
i
c
e
r
t
b
t

4

a
t
v
l
(
n
r

m

o
i
t
a
S
𝑋
b
o
t
s
s
i
o

d
f
u
c

t
i
o

b
E
t
i
h
a
n
s
T
f

4

V
o
2
r
I
𝑋
t
(

c
d
m
p
n
c
i
a
s

t
e
𝛿
f

𝛿

w
d
w
c
v
f
s
a
n
𝛿
e
b
b
f
o

c
t
s
v
V
r

Algorithm 1 The main framework of the VWDT𝑞 algorithm

Input: A graph 𝐺, the center number 𝑝, the radius 𝑟𝑞
Output: The best solution found so far 𝑋∗

1: Solution and attribute tabu lists 𝑆𝐿 ← ∅, 𝐴𝐿𝑗 ← 0,∀𝑗 ∈ 𝐶
2: 𝑖𝑡𝑒𝑟 ← 1, vertex weights 𝑤𝑖 ← 1,∀𝑖 ∈ 𝑉 , vertex age 𝑎𝑗 ← 0,∀𝑗 ∈ 𝐶
3: Current solution 𝑋 ← Initialize(𝐺, 𝑝, 𝑟𝑞) ⊳ Section 4.2
4: Previous solution 𝑋′ ← 𝑋, 𝑋∗ ← 𝑋
5: while termination condition is not met do
6: (𝑖, 𝑗) ← FindPair(𝑋′, 𝑆𝐿,𝐴𝐿, 𝑖𝑡𝑒𝑟) ⊳ Section 4.4
7: MakeMove(𝑋, 𝑖, 𝑗)
8: if |𝑈 (𝑋)| < |𝑈 (𝑋∗)| then
9: 𝑋∗ ← 𝑋 ⊳ 𝑈 (𝑋) is uncovered vertex set of 𝑋

10: else if |𝑈 (𝑋)| > |𝑈 (𝑋′)| then
11: 𝑤𝑘 ← 𝑤𝑘 + 1,∀𝑘 ∈ 𝑈 (𝑋) ⊳ Section 4.3
12: 𝛿𝑙 ← 𝛿𝑙 + 1,∀𝑙 ∈ 𝑆𝑘, 𝑘 ∈ 𝑈 (𝑋)
13: end if
14: 𝑆𝐿 ← 𝑆𝐿 ∪ {𝑋}, 𝐴𝐿𝑗 ← 𝑖𝑡𝑒𝑟 + 2
15: 𝑎𝑗 ← 𝑖𝑡𝑒𝑟, 𝑋′ ← 𝑋, 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1
16: end while
17: return 𝑋∗

candidate center 𝑗 can serve within the current radius, we have 𝑈 (𝑋) =
⧵∪𝑗∈𝑋𝑗 . Conversely, we denote the set of candidate centers serving

ertex 𝑖 by 𝑖, i.e., 𝑖 = {𝑗 ∈ 𝐶|𝑖 ∈ 𝑗}. The constructive heuristic
teratively opens (i.e., inserts centers into the current solution 𝑋) the
urrent best candidate center 𝑗∗ = argmax𝑗∈𝐶⧵𝑋 |𝑗 ∩ 𝑈 (𝑋)| which cov-
rs most uncovered vertices until 𝑝 centers are opened. Ties are broken
andomly if there are multiple current best candidate centers covering
he same number of uncovered vertices. Observing that choosing the
est center at each iteration takes 𝑂(𝑛) time and there are 𝑝 centers in
otal. Thus, the time complexity of the construction procedure is 𝑂(𝑛𝑝).

.3. Weighting technique

The quality of the initial solution is usually poor, so we employ
weighting-based tabu search to iteratively improve the solution ob-

ained by the constructive heuristic. The main idea obtained by the
ertex weighting technique is to help the search to escape from the
ocal optima by altering the objective function. As presented in Eq.
7), we adopt a straightforward objective function which minimizes the
umber of uncovered vertices. When vertex weight 𝑤𝑖 is introduced, we
eplace the objective function 𝑓 (𝑋) with Eq. (11).

in 𝑓 (𝑋) =
∑

𝑖∈𝑉
𝑤𝑖𝑢𝑖. (11)

As a result, VWDT𝑞 actually tackles model (𝑆𝐶𝑤
𝑞) which is composed

f Eqs. (8)–(11). Note that weight 𝑤𝑖 is not a predefined value, instead,
t varies as the search proceeds. If a vertex is not covered for a long
ime during the search process, it implies that this vertex is critical for
chieving the full coverage and we should treat it with higher priority.
pecifically, when the tabu search encounters the local optimal solution
, VWDT𝑞 increases the weight 𝑤𝑖 of each uncovered vertex 𝑖 ∈ 𝑈 (𝑋)

y one (Algorithm 1, lines 11–13). Nevertheless, the optimal value of
bjective function (11) is always zero regardless of the configuration of
he weights. The updated weights reshape the landscape of the solution
pace so that 𝑋 is no longer the local optimum. When encountering
tagnation, the more frequently a vertex appears in 𝑈 (𝑋), the greater
ts weight will be. Thus, it guides the search to escape from the local
ptima and continues to explore other solutions.

Comparing to the tabu strategy, the vertex weighting technique
iversifies the search in an adaptive manner. On the one hand, it
ocuses on the consequences instead of the causes, which prevents
ncovered vertices from appearing rather than forbids opening or
losing centers like the tabu strategies. On the other hand, it modifies
4

he solution space in a smooth way instead of a black-or-white one,
.e., the neighborhood moves become better or worse rather than valid
r invalid.

Note that at each iteration of local search, when there exist multiple
est neighboring solutions according to the weighted objective function
q. (11), we employ an age-based strategy to break ties. Specifically,
he age of a candidate center denotes the most recent iteration at which
t was a center in the local search procedure. If a candidate center
as never been opened as a center, its age is zero. The smaller the
ge of a candidate center is, the longer time the candidate center has
ot been opened for. Thus, we break ties by favoring the neighboring
olution with smaller age value. The age of vertex 𝑗 is denoted as 𝑎𝑗 .
his strategy is able to diversify the search when the weighted objective
unction cannot differentiate equal solutions.

.4. Neighborhood structure and evaluation

To improve the generated initial solution for model (𝑀𝐶𝐿𝑤
𝑞),

WDT𝑞 adopts a swap-based neighborhood inspired by the classical
ne used by most metaheuristics for the 𝑝-center problem (Pullan,
008). However, the neighborhood evaluation is quite different in the
eformulated model, as well as the dedicated acceleration strategies.
n detail, a swap move Swap(𝑖, 𝑗) produces a neighboring solution
⊕Swap(𝑖, 𝑗) = 𝑋 ∪{𝑖}⧵{𝑗}, by adding a candidate center 𝑖 ∈ 𝐶 ⧵𝑋 to

he center set (open), and removing center 𝑗 ∈ 𝑋 from the center set
close).

As we know, the neighborhood evaluation is the most time-
onsuming routine in local search-based metaheuristic algorithms. Un-
er the best improvement policy, the local search evaluates all feasible
oves at each iteration, and performs the best neighborhood moves
roviding the greatest improvement to the objective value. For the
eighborhood evaluation of swap move at each iteration, the time
omplexity is 𝑂(𝑝(𝑛 − 𝑝)) so that it could be time-consuming on large
nstances. In order to overcome the performance issue, VWDT𝑞 employs
n incremental evaluation technique and a neighborhood sampling
trategy.

On the one hand, to accelerate the neighborhood evaluation process,
he VWDT𝑞 algorithm adopts an incremental evaluation mechanism to
fficiently evaluate all neighborhood moves by storing and maintaining
𝑗 (𝑗 ∈ 𝐶) as Eq. (12), instead of naively calculating the objective
unction Eq. (11).

𝑗 =
∑

𝑖∈(𝑗∩𝑈 (𝑋⧵{𝑗}))
𝑤𝑖. (12)

here 𝛿𝑗 records the consequence of flipping the open state of can-
idate center 𝑗. Specifically, 𝛿𝑗 for center 𝑗 ∈ 𝑋 is the sum of the
eights of the vertices which are only covered by center 𝑗. For each

andidate center 𝑗 ∉ 𝑋, 𝛿𝑗 is the sum of the weights of all uncovered
ertices in 𝑗 . Then, we can incrementally evaluate the objective value
or opening or closing a center in 𝑂(1) time complexity. However, we
hould update the affected 𝛿 values every time after opening or closing

center. Specifically, we can calculate the objective value of each
eighboring solution by 𝑓 (𝑋 ∪ {𝑖}) = 𝑓 (𝑋) − 𝛿𝑖, and update the related
values, and thus 𝑓 (𝑋 ⊕ Swap(𝑖, 𝑗)) = 𝑓 (𝑋 ∪ {𝑖}) + 𝛿𝑗 . As we know, at

ach iteration, a typical tabu search algorithm evaluates many moves
ut only performs a single one, and a single neighborhood move only
rings minor changes to the current solution. Therefore, we can benefit
rom maintaining and querying the cache rather than calculating the
bjective function from scratch for each move.

On the other hand, the objective value cannot be improved by
overing already covered vertices, while it can only be improved when
he uncovered vertices are covered. Therefore, VWDT𝑞 will evaluate a
wap move Swap(𝑖, 𝑗) only if candidate center 𝑗 covers some uncovered
ertices in 𝑈 (𝑋). Because each vertex needs to be eventually covered,
WDT𝑞 explores the neighborhood in a more compact way to further
educe the size of the neighborhood. Specifically, it picks a random

Computers and Operations Research 160 (2023) 106373Q. Zhang et al.

1
1
1
1
1
1
1
1
1
1
2
2

t
d
b

2
o

o
t
w
c

Table 1
Test environment of the reference algorithms.

Algorithm Environment Score

ELP (Elloumi et al., 2004) 400 MHz Pentium II CPU and 384 MB RAM 272
VNS (Mladenović et al., 2003) Sun Sparc Station 10 –
PBS (Pullan, 2008) AMD Opteron 252 2.6 GHz CPU 760
DBR2 (Calik and Tansel, 2013) – –
TSA, GMA (Irawan et al., 2016) Intel Core i5-650 3.2 GHz CPU, 4 GB of RAM 1375
EM(𝑍*) (Irawan et al., 2016) Intel Core 2 Duo 2.6 GHz CPU, 8 GB of RAM 1100
GRASP/PR (Yin et al., 2017) Intel Xeon E5-2609v2 2.5 GHz CPU and 32 GB RAM 1356
GRASP+PS (Ferone et al., 2017) Intel Xeon E5-4610v2 2.30 GHz CPU 1474
CIK (Contardo et al., 2019) Intel Xeon E5462 2.8 GHz CPU AND 16GB RAM 1138
Gon+, CDSh, CDSh+ Garcia-Diaz et al. (2019) Intel Core i5 2.3 GHz CPU and 24 GB RAM 1568
SAT-sol (Liu et al., 2020) Intel Xeon E5-2609v2 2.5 GHz CPU and 32 GB RAM 1356
VWTS (Zhang et al., 2020) Intel Xeon E5-2609v2 2.5 GHz CPU and 32 GB RAM 1356
fCLH (Gaar and Sinnl, 2022) Intel Xeon E5-2670v2 2.5 GHz and 32GB RAM 1642
d
t
I
t
c
I
l

r

Algorithm 2 Find the best swap pair
1: function FindPair(𝑋,𝑆𝐿,𝐴𝐿, 𝑖𝑡𝑒𝑟)
2: Best swap move (𝑖∗, 𝑗∗) ← ∅
3: Best objective value in the neighborhood 𝑜𝑏𝑗 ← +∞
4: 𝑘 ← a random vertex in 𝑈 (𝑋)
5: 𝛿′𝑗 ← 𝛿𝑗 ,∀𝑗 ∈ 𝐶
6: for all 𝑖 ∈ 𝑘 do
7: TryToOpenCenter(𝑖) ⊳ Algorithm 3
8: for all 𝑗 ∈ 𝑋 do ⊳ Evaluate closing center 𝑗
9: if NotTabu(𝑆𝑤𝑎𝑝(𝑖, 𝑗), 𝑋, 𝑆𝐿,𝐴𝐿, 𝑖𝑡𝑒𝑟) then
0: if 𝑓 (𝑋 ⊕ Swap(𝑖, 𝑗)) < 𝑜𝑏𝑗 then
1: 𝑜𝑏𝑗 ← 𝑓 (𝑋 ⊕ Swap(𝑖, 𝑗))
2: (𝑖∗, 𝑗∗) ← (𝑖, 𝑗)
3: else if (𝑓 (𝑋 ⊕ Swap(𝑖, 𝑗)) = 𝑜𝑏𝑗)∧(𝑎𝑗 < 𝑎𝑗∗) then
4: (𝑖∗, 𝑗∗) ← (𝑖, 𝑗)
5: end if
6: end if
7: end for
8: 𝛿𝑗 ← 𝛿′𝑗 ,∀𝑗 ∈ 𝐶
9: end for
0: return (𝑖∗, 𝑗∗)
1: end function

Algorithm 3 Open a center virtually
1: function TryToOpenCenter(𝑖)
2: for all 𝑣 ∈ 𝑖 do
3: if |𝑋 ∩ 𝑣| = 1 then
4: 𝛿𝑙 ← 𝛿𝑙 −𝑤𝑣, for 𝑙 ∈ 𝑋 ∩ 𝑣
5: end if ⊳ 𝑙 was the only center covering 𝑣
6: end for
7: end function

vertex 𝑘 ∈ 𝑈 (𝑋), and only evaluates moves Swap(𝑖, 𝑗) which satisfy
𝑖 ∈ 𝑘 and 𝑗 ∈ 𝑋. This sampling strategy not only reduces the
ime consumption for neighborhood evaluation, but also improves the
iversification of the search as a side effect and achieves a better
alance between exploitation and exploration.

The neighborhood evaluation procedure is illustrated in Algorithm
. Starting from a random vertex 𝑘 ∈ 𝑈 (𝑋) (line 4), VWDT𝑞 tries to
pen each candidate center 𝑖 ∈ 𝐶𝑘 which covers vertex 𝑘, i.e., updating

the corresponding 𝛿𝑗 , for all 𝑗 ∈ 𝑋, as if candidate center 𝑖 is already
pened (lines 6–7), so that the objective value 𝑓 (𝑋 ⊕ Swap(𝑖, 𝑗)) of
he resulting neighboring solution can be quickly calculated. Then,
e traverse each non-tabu move and record the best one and the
5

orresponding swap move (lines 9–16). When all trial moves regarding l
opening candidate center 𝑖 are evaluated, the 𝛿 values are restored to
the value before the neighborhood evaluation begins (line 18).

Furthermore, sub-routine TryToOpenCenter() is presented in Algo-
rithm 3. According to the objective function (12), if there is exactly
one center 𝑙 ∈ 𝑋 which covers vertex 𝑣 before opening center 𝑖, the 𝛿
value for closing center 𝑙 will decrease by 𝑤𝑣 (lines 3–5). The reason
lies in the fact that closing center 𝑙 will not make vertex 𝑣 uncovered
anymore once center 𝑖 is opened, so the penalty is reduced. We are
only interested in 𝛿𝑗 (∀𝑗 ∈ 𝑋) for closing a center, since lines 8–17 in
Algorithm 2 only consist of closing another center. In the worst case,
the time complexity of Algorithm 2 and Algorithm 3 are 𝑂(𝑛2) and
𝑂(𝑛), respectively. Besides, when we eventually make the best move
(Algorithm 1, line 7), the affected 𝛿 values should be updated in a
similar way.

4.5. Hybrid double-tabu strategy

Tabu search is a powerful local search-based metaheuristic al-
gorithm for solving a variety of combinatorial optimization prob-
lems (Glover, 1989). It is usually based on a recency-based tabu list
to prohibit revisiting recently explored solutions.

Ideally, all evaluated solutions should never be visited again. How-
ever, if we explore the solution space in such a systematic way, the
proposed VWDT𝑞 will be no longer a heuristic algorithm, and it will
have to face the drawbacks and limitations of the exact algorithms. In
contrast, the traditional attribute-based tabu search approaches usually
record limited features of the recently visited solutions, and it has the
ability to help the search to jump out of local optimal trap. It is simple
and efficient but may misjudge the tabu status of the solution. As a
consequence, promising neighborhood moves may be falsely forbidden,
so synthetic parameters such as the tabu tenure must be carefully tuned.
We try to combine their advantages and balance the completeness
and the convergence rate when designing the VWDT𝑞 algorithm. As a
result, it integrates both attribute-based and solution-based tabu strate-
gies (Wang et al., 2017) which can lead to different search trajectories
and help the search to jump out of the local optimum trap. For the
solution-based tabu strategy, we do not prohibit all evaluated solutions,
but only forbid the solutions that are actually visited.

Let us recall that each term 𝑥𝑗 in the solution vector of model (𝑆𝐶𝑤
𝑞)

enotes whether vertex 𝑗 is chosen to be a center. The attribute-based
abu strategy prevents closing the newly opened center immediately.
n detail, the parameter of the tabu tenure 𝑡𝑡 in the attribute-based
abu strategy is fixed to two iterations. Particularly, if we set 𝑥𝑗 = 1 at
urrent iteration 𝑖𝑡𝑒𝑟, it is forbidden to reset 𝑥𝑗 = 0 at next 𝑡𝑡 iterations.
n other words, there will be an entry {𝑗} in the attribute-based tabu
ist 𝐴𝐿 until iteration 𝑖𝑡𝑒𝑟 + 𝑡𝑡.

The idea behind the solution-based tabu strategy is similar to the
ow generation approach in mathematical programming. When a so-

ution 𝑋 is recorded as in tabu status, it can be regarded as adding a

Computers and Operations Research 160 (2023) 106373Q. Zhang et al.

e
v
a
I
t
ℎ
t

lazy constraint ∑

𝑗∈𝑋 𝑥𝑗 ≤ 𝑝 − 1 to model (𝑀𝐶𝐿𝑤
𝑞). If a swap move is

eventually performed, a new current solution 𝑋 is obtained, the tabu
status of 𝑋 will be saved into the solution-based tabu list 𝑆𝐿 and it
will be prohibited to be visited forever. Technically, we implement
the solution-based tabu list in an efficient but inaccurate way. VWDT𝑞
mploys a hash function ℎ to map a solution vector 𝑋 to an integer
alue ℎ(𝑋) ∈ [0, 𝐿) (𝐿 = 108) and the solution-based tabu list 𝑆𝐿 is
binary vector, where 𝑆𝐿(ℎ(𝑋)) = 1 iff solution 𝑋 has been visited.

n case of hash collision which leads to incorrect identification of the
abu status of some unvisited solutions, we use multiple hash functions
𝑡 (𝑡 = 1, 2, 3) to reduce the collision rate, i.e., a solution 𝑋 is in
abu status iff ⋀3

𝑡=1 𝑆𝐿
𝑡(ℎ𝑡(𝑋)) = 1. We define the hash function ℎ𝑡 as

Eq. (13), where 𝛾𝑡 is a constant parameter, and the values of 𝛾1, 𝛾2, 𝛾3
are 1.3, 1.9, 2.3, respectively.

ℎ𝑡(𝑋) = (
∑

𝑗∈𝑋
⌊𝑗𝛾𝑡⌋) mod 𝐿 (13)

In VWDT, the solution-based and attribute-based tabu strategies are
simultaneously used. When a swap move satisfies either one condition
of the two tabu strategies, the VWDT algorithm will not accept it as the
candidate move.

5. Experimental results and comparisons

To demonstrate the effectiveness of VWDT, we conduct extensive
computational experiments on three well-known sets of 174 standard
benchmark instances and a set of 336 massive instances, and compare
VWDT with the state-of-the-art algorithms in the literature.

5.1. Experimental protocol

Our VWDT algorithm is programmed in C++ and compiled with
Visual Studio 2017. All computational experiments are carried out
in a single thread on a Windows Server 2012 × 64 with Intel Xeon
E5-2609v2 2.50 GHz CPU and 32 GB RAM. We reimplement PBS
algorithm (Pullan, 2008) under a 5 ms (20 s) time limit to obtain a good
initial upper bound of the covering radius 𝑟𝑞0 for each instance with less
(more) than 70,000 vertices. For VWDT, it includes the total time for
computing 𝑟𝑞0 and sequentially solving all subproblems from (𝑀𝐶𝐿𝑞0)
to (𝑀𝐶𝐿𝑞∗), where 𝑞∗ is the edge length rank of the best covering
radius 𝑟𝑞∗ . Unless otherwise specified, the result of each instance is
obtained by running VWDT in 20 independent runs, and the time limit
for each decision subproblem corresponds to each covering radius is
900 s. There are four sets of instances in our experiment.

(1) ORLIB: The first set consists of 40 𝑝-median problem instances
(pmed) from the OR-Library1 (Beasley, 1990). They are based
on random undirected graphs where vertex number 𝑛 and center
number 𝑝 satisfy 𝑛 ∈ [100, 900] and 𝑝 ∈ [5, 90] whose scale are
relatively small.

(2) TSPLIB: The second set contains 98 TSP instances from the
TSPLIB2 (Reinelt, 1991). These instances are based on planar
graphs and they are usually derived from real-world applica-
tions. There are 44 small instances (sTSP) whose vertex number
ranges from 226 to 657, and the remaining 54 ones (u1060,
rl1323, u1817, and pcb3038) are categorized as the large in-
stances. The center number 𝑝 distributes between 5 and 500.

(3) World TSP: The third set is composed of 36 TSP instances
from the World TSP3 (Reinelt, 1991). These instances are based
on the maps of six countries, denoted as Oman (mu1979),
Canada (ca4663), Tanzania (tz6117), Sweden (sw24978), Burma
(bm33708), and China (ch71009), respectively. The number of
vertices 𝑛 ranges from 1979 to 71,009 which are explicit in their
names, and the number of centers 𝑝 varies from 5 to 100.

1 http://people.brunel.ac.uk/~mastjjb/jeb/orlib/pmedinfo.html
2 https://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
3

6

http://www.math.uwaterloo.ca/tsp/world/countries.html
Table 2
Parameter settings.

Parameter Value Range Description

𝑡𝑡 2 [0, 10] The attribute-based tabu tenure
𝛾1 1.3 [1, 2] A constant parameter in Section 4.5
𝛾2 1.7 [1.5, 2.5] A constant parameter in Section 4.5
𝛾3 2.3 [2, 4] A constant parameter in Section 4.5

(4) Massive TSP: The last set is based on the massive graphs
in TSPLIB4 (Reinelt, 1991). The complete set was firstly used
in Contardo et al. (2019), and then studied by Gaar and Sinnl
(2022). The set of massive TSP instances was previously used
only for testing exact algorithms. The numbers of vertices 𝑛 are
between 1621 and 238,025 which are explicit in their names,
and the number of centers 𝑝 varies from 2 to 30. According to
the number of centers, the set is further divided into 9 datasets,
which are P2, P3, P5, P10, P15, P20, P25, and P30, respectively.

For all instances, the distance matrix 𝒅 is not given directly, so we
calculate all-pair shortest paths with the Floyd algorithm (Floyd, 1962)
for the ORLIB instances, and calculate the Euclidean distances for the
TSPLIB, World TSP, and massive TSP instances to obtain the distance
𝑑𝑖𝑗 between each pair of vertices 𝑖 and 𝑗. For the TSPLIB and World TSP,
the Euclidean distances are rounded to the nearest hundredths. For the
massive TSP, we round the distances to their nearest integers as in the
very recent literature for fair comparison.

5.2. Reference algorithms

We compare our proposed VWDT algorithm with five exact al-
gorithms (ELP, DBR2, CIK, SAT-sol, and fCLH), three approximation
algorithms (Gon+, CDSh, and CDSh+), and six metaheuristic algorithms
(VNS, PBS, GRASP/PR, GRASP+PS, TSA, and GMA) regarding the
solution quality and computational time to reach the best solution. Note
that for three approximation algorithms, we only report the best results
among them. Meanwhile, we also compare VWDT algorithm with our
preliminary VWTS algorithm (Zhang et al., 2020). Table 1 shows the
experimental environments of the reference algorithms. Column Score
is the single-thread rating of the processor used in each literature
obtained from https://www.passmark.com. In order to compare CPU
times as fairly as possible, the CPU times of all algorithms in this
section are normalized by multiplying Score/1356 (the denominator is
the single-thread rating of our CPU), except for VNS (Mladenović et al.,
2003) and DBR2 (Calik and Tansel, 2013). For VNS and DBR2, the CPU
times are not normalized due to the unclear test environment. However,
because of the relatively low quality of the solutions obtained by VNS
and DBR2, it does not affect the overall conclusion.

5.3. Parameter setting

The setting of parameters of VWDT is shown in Table 2, which can
be considered as the default setting of the algorithm and throughout
all the experiments presented in this study. The parameters of our
algorithm are tested and tuned by the IRACE package (López-Ibáñez
et al., 2016) within the range in column Range. The IRACE package
is an automatic algorithm configuration tool that implements config-
uration procedures based on iterated racing. The final values of all
parameters are recorded in Value. In addition, parameters 𝛾1, 𝛾2, and
𝛾3 are introduced to construct different hash functions. Note that the
value of 𝛾𝑡 is insensitive to the performance of the algorithm. We only
need to make sure that they are not too large to avoid overflow.

4 https://www.math.uwaterloo.ca/tsp/data/index.html

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/pmedinfo.html
https://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
http://www.math.uwaterloo.ca/tsp/world/countries.html
https://www.passmark.com
https://www.math.uwaterloo.ca/tsp/data/index.html

Computers and Operations Research 160 (2023) 106373Q. Zhang et al.

s
𝑟
e
V
i
b
n
2

a
s
s

5.4. Computational results

This section presents comprehensive investigations on the perfor-
mance of VWDT.

5.4.1. Three well-known sets
Table 3 shows the overall results on three well-known sets obtained

by VWDT. Columns Set and Dataset give the names of sets of bench-
mark instances and datasets, respectively. Column Count presents the
number of instances in the dataset. Column CPU reports the average
total CPU execution time in seconds on each dataset of our VWDT
algorithm. Column CPU-𝑞∗ gives the run time in seconds for VWDT to
olve the subproblem corresponding to the best known covering radius
𝑞∗ , which shows that the performance of VWDT can be significantly
nhanced when parallel computing is available. We can observe that
WDT is able to obtain the optimal solution with 100% success rate

n 20 independent runs except for the three largest datasets sw24978,
m33708, and ch71009. In general, VWDT is highly stable when the
umber of vertices is less than 10,000 for it reaches such results in all
0 independent runs.

Tables 4 to 9 reports the detailed results. Since most reference
lgorithms and the proposed VWDT algorithm can obtain the optimal
olutions on all instances in the pmed and sTSP datasets within one
econd, we omit the detailed results on these two datasets.5 These tables

follow the same convention described below. Column Ins. gives the
names of instances. Columns 𝑛 and 𝑝 denote the numbers of vertices
and centers, respectively. Column BKS represents the objective values
of the best known solutions of all algorithms. For each instance whose
optimal objective value can be proven, i.e., the lower bound of model
(𝑀𝐶𝐿𝑞∗−1) is greater than zero, it is marked with ‘‘*’’. Specifically,
the MIP models are solved by Gurobi 8.1 under a 100-hour time limit.
Columns 𝑓𝑏𝑒𝑠𝑡 and 𝑓𝑎𝑣𝑔 give the best and the average objective values
obtained by the corresponding algorithms, respectively. Apparently,
smaller 𝑓𝑏𝑒𝑠𝑡 is better according to model (𝑃𝐶). Column Hit shows
the success rate for reaching the best known result 𝑓𝑏𝑒𝑠𝑡 under the
given time limit. Column CPU reports the normalized average total
CPU execution time in seconds of these algorithms (see Section 5.2).
If the total CPU execution time of the corresponding algorithms is not
normalized due to the unclear test environment, it is represented by
CPU0. For VWDT algorithm, the CPU time includes the total time for
calculating 𝑟𝑞0 using PBS and sequentially solving all subproblems from
(𝑀𝐶𝐿𝑞0) to (𝑀𝐶𝐿𝑞∗), where 𝑞∗ is the edge length rank of the best
covering radius 𝑟𝑞∗ . Column CPU-𝑞∗ gives the run time in seconds for
VWDT to solve the subproblem corresponds to the best known covering
radius 𝑟𝑞∗ , which shows the high potential of VWDT when parallel
computing is available. #better, #equal, and #worse are the numbers
of instances for which VWDT achieves better, equal, and worse results
comparing to the corresponding algorithms, respectively. Note that the
exact algorithms do not stop until they find the optimal solutions and
prove their optimality, so we may omit 𝑓𝑏𝑒𝑠𝑡 values for them on small
instances. We record the computational time which is less than 0.01 s
as ‘‘< 𝜀’’. If an algorithm did not report its result on a certain instance,
the corresponding item will be marked with a hyphen ‘‘-’’. Row Avg.
shows the average computational time taken by each algorithm over
all instances of the corresponding dataset. The row 𝑝-value is given
to verify the statistical significance of the comparison between VWDT
and the reference algorithms, which came from the non-parametric
Wilcoxon test applied to the best values of VWDT and the reference
algorithms. A 𝑝-value less than 0.05 indicates a statistically significant
difference. In addition, the improved best known results are indicated
in bold, while the matched best ones are indicated in italic.

Tables 4 to 6 compare the experimental results of our VWDT
with those obtained by ELP (Elloumi et al., 2004), DBR2 (Calik and

5 The detailed results are reported in the supplemental materials.
7

Table 3
Overall results of VWDT on three Well-Known sets including 12 datasets.

Set Dataset Count CPU-𝑞∗ CPU Hit

ORLIB pmed 40 < 𝜀 < 𝜀 100.00%

TSPLIB sTSP 44 < 𝜀 < 𝜀 100.00%
u1060 15 0.02 0.36 100.00%
rl1323 10 0.11 0.79 100.00%
u1817 15 0.23 0.92 100.00%
pcb3038 14 22.30 118.17 100.00%

World TSP mu1979 8 0.12 0.78 100.00%
ca4663 8 0.59 4.62 100.00%
tz6117 8 6.67 43.17 100.00%
sw24978 4 302.55 1056.66 55.00%
bm33708 4 519.80 3110.63 46.25%
ch71009 4 480.02 5754.24 20.00%

Tansel, 2013), VNS (Mladenović et al., 2003), PBS (Pullan, 2008),
GRASP/PR (Yin et al., 2017), GRASP+PS (Ferone et al., 2017), Gon+,
CDSh, CDSh+ (Garcia-Diaz et al., 2019), SAT-sol (Liu et al., 2020) and
VWTS (Zhang et al., 2020) on the datasets u1060, rl1323 and u1817
from TSPLIB.

As shown in Tables 4, 5, and 6, the proposed VWDT improves the
previous best known results obtained by GRASP/PR and PBS on rl1323
with 𝑝 = 100. Apart from the improved solution quality, VWDT outper-
forms all other algorithms on instances u1060, rl1323, and u1817 in
terms of the computational time. In detail, VWDT obtains the optimal
solutions in no more than 5 s on all the 40 instances, while PBS,
GRASP/PR, and SAT-sol may spend over 1000 s to converge to their
best solutions on several hard instances. Furthermore, the proposed
algorithm reaches the best results within 0.5 s in half of the instances,
whereas PBS, GRASP/PR, and SAT-sol take 100 to 5000 s on most
instances. For datasets u1060, r1323 and u1817, VWDT is highly stable
for it reaches such results on all 20 independent runs.

The datasets pmed, sTSP, u1060, rl1323, and u1817 have already
been closed and VWDT can obtain the optimal solutions on all in-
stances within a short time. Fig. 1 illustrates the overall advantage
of VWDT on the closed instances, where we only choose several best-
performing algorithms, including GRASP/PB, PBS, SAT-sol, and VWTS
for comparison. In these three charts, the height of each bar stands for
the number of instances whose computational time is no more than
the time specified by the corresponding 𝑥 value. As we can see, the
computing time of VWDT is no more than 0.05 s on the ORLIB instances
and the small TSPLIB instances. However, GRASP/PR, PBS, and SAT-
sol may spend hundreds of seconds to converge on several hard small
instances.

Table 7 reports the computational results on the most challeng-
ing dataset pcb3038 from TSPLIB. VNS and GRASP+PS only tackle
the instances where 𝑝 ≥ 50. Gon+/CDSh and GRASP+PS did not
report their computational time. From Table 7, we can observe that,
VWTS and VWDT significantly improve the best known results on 10
instances where 𝑝 = 50, 100, 150, 200, 250, 300, 350, 400, 450, 500. Further-
more, VWDT further improves the best results obtained by VWTS on
four instances where 𝑝 = 50, 100, 150, 200. Among the improved results,
the results for 𝑝 = 450, 500 have been proven to be optimal. For the
solution quality, our VWDT algorithm outperforms Gon+/CDSh, VNS,
and GPASP+PS algorithms on all instances of pcb3038. Furthermore,
we can also observe from Table 3 that the success rate of obtaining
the new records is still 100%. In addition to the new upper bounds,
the total computational time of the VWDT is much shorter than PBS
and GRASP/PR. Compared with VWTS, our VWDT not only improves
the quality of the solutions, but also is almost twice as fast as VWTS
in terms of the total computational time. The small 𝑝-values (<0.05)
indicate that there are significant differences between our best results
and those of all the reference algorithms (except for VWTS).

Tables 8 and 9 report the computational results obtained by EM(Z*),

TSA, GMA (Irawan et al., 2016), GDSh, Gon+ (Garcia-Diaz et al., 2019),

Computers and Operations Research 160 (2023) 106373Q. Zhang et al.
Table 4
Computational results on u1060 dataset from TSPLIB.

Ins. 𝑛 𝑝 BKS ELP (Ilhan
et al., 2002)

VNS (Mladenović
et al., 2003)

CDSh+Garcia-
Diaz et al.
(2019)

GRASP+PS
(Ferone et al.,
2017)

PBS (Pullan,
2008)

GRAS/PR (Yin
et al., 2017)

SAT-sol (Liu
et al., 2020)

VWTS (Zhang
et al., 2020)

VWDT

𝑓𝑏𝑒𝑠𝑡 CPU 𝑓𝑏𝑒𝑠𝑡 CPU0 𝑓𝑏𝑒𝑠𝑡 𝑓𝑏𝑒𝑠𝑡 𝑓𝑏𝑒𝑠𝑡 CPU 𝑓𝑏𝑒𝑠𝑡 CPU 𝑓𝑏𝑒𝑠𝑡 CPU 𝑓𝑏𝑒𝑠𝑡 CPU-𝑞* CPU 𝑓𝑏𝑒𝑠𝑡 CPU-𝑞* CPU

u1060 1060 10 2273.08* 2273 10.63 2280.09 94.93 2475.60 2301.70 2273.08 77.41 2273.08 1.31 2273.08 1.29 2273.08 < 𝜀 0.20 2273.08 < 𝜀 0.10
u1060 1060 20 1580.80* 1581 557.27 1611.95 20.49 1698.71 1650.34 1580.80 369.60 1580.80 14.88 1580.80 8.03 1580.80 0.05 0.65 1580.80 0.03 0.45
u1060 1060 30 1207.77* 1208 59.78 1220.41 373.46 1299.08 1302.94 1207.77 20.65 1207.77 3.19 1207.77 6.43 1207.77 0.09 1.08 1207.77 0.02 0.40
u1060 1060 40 1020.56* 1021 73.42 1050.45 279.75 1139.49 1118.59 1020.56 26.75 1020.56 3.26 1020.56 9.17 1020.56 0.01 0.29 1020.56 0.01 0.30
u1060 1060 50 904.92* 905 76.83 922.14 477.18 1000.70 950.66 904.92 130.66 904.92 218.85 904.92 14.91 904.92 0.10 1.02 904.92 0.05 0.81
u1060 1060 60 781.17* 781 46.74 806.52 446.89 906.22 860.49 781.17 57.80 781.17 7.75 781.17 9.80 781.17 0.01 0.42 781.17 0.02 0.45
u1060 1060 70 710.75* 711 27.08 721.37 422.73 790.13 790.13 710.76 61.41 710.75 116.91 710.75 8.46 710.75 0.01 0.45 710.75 0.01 0.33
u1060 1060 80 652.16* 652 12.04 670.53 398.84 721.37 720.94 652.16 79.65 652.16 316.57 652.16 14.41 652.16 0.05 0.47 652.16 0.03 0.41
u1060 1060 90 607.87* 608 7.62 640.23 111.08 671.17 667.55 607.88 35.39 607.87 7.09 607.87 10.50 607.87 0.03 0.40 607.87 0.01 0.29
u1060 1060 100 570.01* 570 5.82 582.92 430.33 632.88 632.11 570.01 9.83 570.01 19.04 570.01 16.28 570.01 0.01 0.38 570.01 0.02 0.31
u1060 1060 110 538.84* 539 6.02 565.72 186.60 583.32 570.49 538.84 90.08 538.84 66.46 538.84 24.54 538.84 0.03 0.39 538.84 0.02 0.32
u1060 1060 120 510.27* 510 8.83 551.90 218.84 565.71 570.00 510.28 60.33 510.27 397.85 510.27 13.97 510.27 0.05 0.35 510.27 0.04 0.30
u1060 1060 130 499.65* 500 8.83 500.14 473.65 538.22 538.82 499.65 66.53 499.65 58.18 499.65 11.53 499.65 0.02 0.29 499.65 0.02 0.26
u1060 1060 140 452.46* 452 9.23 500.12 214.06 500.19 500.39 452.46 178.50 452.46 127.39 452.46 4.03 452.46 0.04 0.42 452.46 0.02 0.37
u1060 1060 150 447.01* 447 10.03 453.16 428.16 495.01 499.65 447.01 5.94 447.01 4.37 447.01 4.11 447.01 0.01 0.30 447.01 0.01 0.25
Avg. 61.34 305.13 84.70 90.87 10.50 0.03 0.47 0.02 0.36
𝑝-value 1.00 6.10E−05 6.10E−05 6.10E−05 0.08 1.00 1.00 1.00

#better/#equal/#worse 0/15/0 15/0/0 15/0/0 15/0/0 3/12/0 0/15/0 0/15/0 0/15/0
Table 5
Computational results on rl1323 dataset from TSPLIB.

Ins. 𝑛 𝑝 BKS ELP (Ilhan
et al., 2002)

GRASP+PS (Ferone et al., 2017) PBS (Pullan,
2008)

GRAS/PR (Yin
et al., 2017)

VWTS (Zhang
et al., 2020)

VWDT

𝑓𝑏𝑒𝑠𝑡 CPU 𝑓𝑏𝑒𝑠𝑡 𝑓𝑏𝑒𝑠𝑡 CPU 𝑓𝑏𝑒𝑠𝑡 CPU 𝑓𝑏𝑒𝑠𝑡 CPU-𝑞∗ CPU 𝑓𝑏𝑒𝑠𝑡 CPU-𝑞∗ CPU

rl1323 1323 10 3077.30* 3077 276.81 3110.57 3077.30 2667.90 3077.30 38.02 3077.30 0.02 0.62 3077.30 0.01 0.24
rl1323 1323 20 2016.40* 2016 96.28 2090.87 2016.40 339.59 2016.40 104.89 2016.40 0.15 2.00 2016.40 0.08 0.56
rl1323 1323 30 1631.50* 1632 180.53 1730.78 1631.50 672.68 1631.50 169.47 1631.50 0.19 2.22 1631.50 0.18 1.04
rl1323 1323 40 1352.36* 1352 601.77 1479.24 1352.36 163.66 1352.36 21.90 1352.36 0.42 2.66 1352.36 0.06 1.02
rl1323 1323 50 1187.27* 1187 1721.06 1300.00 1187.27 347.16 1187.27 119.63 1187.27 0.10 1.59 1187.27 0.04 0.69
rl1323 1323 60 1063.01* 1063 1829.38 1181.30 1063.01 4587.41 1063.01 4190.92 1063.01 0.40 1.83 1063.01 0.28 0.81
rl1323 1323 70 971.93* 972 349.03 1076.20 971.93 4162.63 971.93 6287.04 971.93 0.26 1.94 971.93 0.26 1.10
rl1323 1323 80 895.06* 895 84.25 988.87 895.06 4922.63 895.06 5265.81 895.06 0.06 1.69 895.06 0.06 1.03
rl1323 1323 90 832.00* 832 24.07 935.02 832.00 521.18 832.00 776.23 832.00 0.04 1.73 832.00 0.03 0.58
rl1323 1323 100 787.10* 787 24.07 886.85 789.70 1031.55 789.70 2010.67 787.10 0.31 1.69 787.10 0.08 0.81
Avg. 545.60 1941.64 1898.46 0.20 1.80 0.11 0.79
𝑝-value 1.00 1.95E−03 0.32 0.32 1.00

#better/#equal/#worse 0/10/0 10/0/0 1/9/0 1/9/0 0/10/0
Table 6
Computational results on u1817 dataset from TSPLIB.

Ins. 𝑛 𝑝 BKS ELP (Ilhan
et al., 2002)

DBR2(Calik and
Tansel, 2013)

CDSh+Garcia-
Diaz et al.
(2019)

GRASP+PS
(Ferone et al.,
2017)

PBS (Pullan,
2008)

GRASP/PR (Yin
et al., 2017)

SAT-sol (Liu
et al., 2020)

VWTS (Zhang
et al., 2020)

VWDT

𝑓𝑏𝑒𝑠𝑡 CPU 𝑓𝑏𝑒𝑠𝑡 CPU0 𝑓𝑏𝑒𝑠𝑡 𝑓𝑏𝑒𝑠𝑡 𝑓𝑏𝑒𝑠𝑡 CPU 𝑓𝑏𝑒𝑠𝑡 CPU 𝑓𝑏𝑒𝑠𝑡 CPU 𝑓𝑏𝑒𝑠𝑡 CPU-𝑞∗ CPU 𝑓𝑏𝑒𝑠𝑡 CPU-𝑞∗ CPU

u1817 1817 10 457.91* 458 541.59 458 4.00 475.54 466.96 457.91 2979.81 457.91 604.53 457.91 42.61 457.91 1.85 1.78 457.91 0.39 0.83
u1817 1817 20 309.01* 310 986.90 309 278.49 338.89 330.20 309.01 5740.91 309.01 4068.06 309.01 80.93 309.01 2.92 8.56 309.01 0.82 2.10
u1817 1817 30 240.99* 250 3309.73 241 344.59 283.98 265.19 240.99 899.84 240.99 1239.97 240.99 123.61 240.99 1.52 5.23 240.99 0.45 2.32
u1817 1817 40 209.45* 210 1287.79 209 1221.86 236.22 232.25 209.46 108.56 209.45 308.29 209.45 47.09 209.45 0.91 1.41 209.45 0.09 0.77
u1817 1817 50 184.91* 187 1973.81 185 330.09 209.43 204.79 184.91 632.72 184.91 471.94 184.91 173.81 184.91 0.08 1.20 184.91 0.08 0.75
u1817 1817 60 162.64* 163 252.74 163 17.52 193.42 184.91 162.65 469.28 162.64 469.43 162.64 134.17 162.64 0.07 0.93 162.64 0.03 0.60
u1817 1817 70 148.11* 148 84.25 148 6.04 179.59 170.39 148.11 107.50 148.11 19.66 148.11 46.17 148.11 0.05 0.45 148.11 0.04 0.38
u1817 1817 80 136.77* 137 228.67 137 35.12 152.41 154.50 136.80 71.46 136.80 12.42 136.77 2313.89 136.77 3.00 1.66 136.77 0.44 0.63
u1817 1817 90 129.51* 130 1444.65 129(?) 7519.04 148.09 148.11 129.54 1660.96 129.51 3859.05 129.51 370.95 129.51 0.55 0.59 129.51 0.06 0.34
u1817 1817 100 126.99* 127 60.18 127 10.22 136.77 136.79 127.01 82.05 126.99 2.35 126.99 124.24 126.99 0.02 0.27 126.99 0.02 0.23
u1817 1817 110 109.25* 109 84.25 110 5.32 129.50 – 109.25 7719.04 109.25 6954.89 109.25 84.25 109.25 0.27 1.70 109.25 0.13 0.68
u1817 1817 120 107.76* 108 24.07 107(?) 3.99 126.99 – 107.78 44.89 107.76 5.25 107.76 54.48 107.76 0.02 0.25 107.76 0.01 0.21
u1817 1817 130 104.73* 108 746.19 105 335.03 113.59 – 107.75 6.28 107.75 7.04 104.73 941.17 104.73 1.20 9.17 104.73 0.80 2.63
u1817 1817 140 101.60* 105 806.37 102 4.62 107.79 – 101.61 2773.94 101.60 30.95 101.60 385.56 101.60 0.39 0.60 101.60 0.12 0.40
u1817 1817 150 91.60* 94 1131.33 92 6.61 107.75 – 101.60 175.99 92.44 1236.55 91.60 227.99 91.60 0.07 1.41 91.60 0.05 0.94
Avg. 864.17 674.84 1564.88 1286.03 0.86 2.35 0.23 0.92
𝑝-value 1.73E−02 0.32 6.10E−05 5.07E−03 7.57E−03 0.11 1.00 1.00

#better/#equal/#worse 7/8/0 1/12/0 15/0/0 10/0/0 9/6/0 3/12/0 0/15/0 0/15/0
8

Computers and Operations Research 160 (2023) 106373Q. Zhang et al.
Fig. 1. Distribution of computational time on closed instances.
Fig. 2. Comparison on different tabu strategies.
Table 7
Computational results on pcb3038 dataset from TSPLIB.

Ins. 𝑛 𝑝 BKS VNS (Mladenović
et al., 2003)

DBR2(Calik and
Tansel, 2013)

Con+/CDSh
(Garcia-Diaz
et al., 2019)

GRASP+PS
(Ferone et al.,
2017)

PBS (Pullan,
2008)

GRASP/PR (Yin
et al., 2017)

VWTS (Zhang
et al., 2020)

VWDT

𝑓𝑏𝑒𝑠𝑡 CPU0 𝑓𝑏𝑒𝑠𝑡 CPU0 𝑓𝑏𝑒𝑠𝑡 𝑓𝑏𝑒𝑠𝑡 𝑓𝑏𝑒𝑠𝑡 CPU 𝑓𝑏𝑒𝑠𝑡 CPU 𝑓𝑏𝑒𝑠𝑡 CPU-𝑞∗ CPU 𝑓𝑏𝑒𝑠𝑡 CPU-𝑞∗ CPU

pcb3038 3038 10 728.54* – – 729 176.23 806.98 – 728.54 3035.18 728.54 240.56 728.54 0.53 23.37 728.54 0.51 18.91
pcb3038 3038 20 493.04* – – 493 22740.76 582.60 – 493.04 544.83 493.04 1051.99 493.04 1.74 38.28 493.04 1.41 23.67
pcb3038 3038 30 393.50 – – 397 76923.67 502.31 – 393.50 245.82 393.50 644.34 393.50 1.23 69.22 393.50 0.89 23.92
pcb3038 3038 40 336.42 – – 337 72364.56 411.91 – 336.42 427.64 336.42 210.14 336.42 79.81 264.98 336.42 18.23 89.40
pcb3038 3038 50 297.83 317.00 578.81 300 91029.77 364.11 534.48 298.20 410.04 298.10 4686.77 298.04 78.34 307.51 297.83 33.85 201.46
pcb3038 3038 100 206.31 220.06 570.60 209 27292.39 327.39 399.49 206.63 317.12 207.06 6678.44 206.60 97.85 683.89 206.31 95.79 403.21
pcb3038 3038 150 164.40 174.83 52.99 – – 306.91 331.62 164.77 239.32 165.00 5653.32 164.55 88.55 705.74 164.40 22.92 325.11
pcb3038 3038 200 140.06 157.88 747.00 141 33929.91 280.14 301.01 140.90 504.09 140.62 5021.13 140.09 59.09 360.98 140.06 101.48 371.67
pcb3038 3038 250 122.25 140.98 103.72 – – 257.80 292.48 122.78 405.61 122.78 1985.10 122.25 24.37 205.55 122.25 15.56 90.85
pcb3038 3038 300 115.00 123.33 786.96 115 6185.96 243.50 261.28 115.25 301.20 115.73 3671.32 115.00 29.73 133.26 115.00 18.43 50.54
pcb3038 3038 350 104.68 118.02 264.60 – – 233.34 258.82 104.81 451.68 104.81 3926.83 104.68 1.64 49.33 104.68 0.97 18.85
pcb3038 3038 400 96.88 107.65 904.88 97 11.48 212.04 249.78 97.51 347.83 97.80 6956.46 96.88 2.89 55.58 96.88 1.08 15.65
pcb3038 3038 450 88.55* 101.51 675.55 – – 205.00 214.97 88.90 373.39 89.56 6161.75 88.55 0.51 49.46 88.55 0.49 16.58
pcb3038 3038 500 84.58* 94.37 937.70 85 5.23 196.65 209.35 85.00 244.25 85.09 3015.45 84.58 0.76 33.60 84.58 0.55 12.99
Avg. 562.28 33066.00 560.57 3564.54 33.36 212.91 22.30 118.77
𝑝-value 1.95E−03 0.04 1.22E−04 1.95E−03 5.06E−03 5.06E−03 0.06

#better/#equal/#worse 10/0/0 5/5/0 14/0/0 10/0/0 10/4/0 10/4/0 4/10/0
9

Computers and Operations Research 160 (2023) 106373Q. Zhang et al.
Table 8
Computational results on mu1979, ca4663, and tz6117 datasets from world TSP.

Ins. 𝑛 𝑝 BKS EM (Z*) TSA (Irawan
et al., 2016)

GMA (Irawan
et al., 2016)

GDSh
(Garcia-Diaz
et al., 2019)

VWTS (Zhang
et al., 2020)

VWDT

𝑓𝑏𝑒𝑠𝑡 CPU 𝑓𝑏𝑒𝑠𝑡 CPU 𝑓𝑏𝑒𝑠𝑡 CPU 𝑓𝑏𝑒𝑠𝑡 𝑓𝑏𝑒𝑠𝑡 CPU-𝑞∗ CPU 𝑓𝑏𝑒𝑠𝑡 CPU-𝑞∗ CPU

mu1979 1979 5 1876.83* 1876.83 54.76 1876.83 37.00 1876.83 79.56 – 1876.83 0.07 0.14 1876.83 0.07 0.11
mu1979 1979 10 1160.70* 1160.70 42.61 1160.70 30.71 1160.70 60.40 1160.79 1160.70 0.17 0.37 1160.70 0.05 0.10
mu1979 1979 15 867.52* 867.52 29.73 867.52 39.47 867.52 64.18 – 867.52 0.20 0.93 867.52 0.14 0.54
mu1979 1979 20 750.53* 750.53 31.56 750.53 71.10 750.53 67.29 768.29 750.53 0.26 1.08 750.53 0.03 0.66
mu1979 1979 25 638.79* 638.79 24.59 638.79 82.24 638.79 63.09 – 638.79 0.22 0.97 638.79 0.17 0.68
mu1979 1979 50 380.90* 380.90 24.72 382.70 129.24 380.90 129.38 400.34 380.90 0.20 1.06 380.90 0.07 0.49
mu1979 1979 75 284.80* 284.80 22.42 286.73 149.67 284.80 105.12 – 284.80 0.29 1.36 284.80 0.01 0.37
mu1979 1979 100 220.32* 220.32 36.58 226.50 184.22 222.09 154.56 235.08 220.32 0.95 6.87 220.32 0.44 3.20

ca4663 4663 5 16836.61* 16836.61 836.47 16836.61 126.46 16836.61 315.08 – 16836.61 1.62 7.57 16836.61 0.57 4.29
ca4663 4663 10 10498.81* 10498.81 511.52 10498.81 131.28 10498.81 292.41 12184.71 10498.81 1.16 18.92 10498.81 0.47 2.24
ca4663 4663 15 8295.93* 8295.93 377.92 8295.93 230.13 8295.93 372.31 – 8295.93 0.81 4.56 8295.93 0.26 2.10
ca4663 4663 20 7023.87* 7023.87 338.53 7023.87 370.11 7023.87 484.33 8414.57 7023.87 0.73 12.04 7023.87 0.33 7.70
ca4663 4663 25 5965.76* 5965.76 331.87 5966.51 368.82 5965.76 432.18 – 5965.76 3.72 37.87 5965.76 2.20 9.15
ca4663 4663 50 3955.06* 3955.06 412.34 3955.50 347.18 3955.06 338.25 4663.15 3955.06 0.56 6.75 3955.06 0.21 2.41
ca4663 4663 75 3069.32* 3069.32 466.88 3072.09 330.17 3072.09 283.01 – 3069.32 0.68 10.70 3069.32 0.35 3.53
ca4663 4663 100 2543.89* 2543.89 382.77 2545.53 383.33 2545.53 280.58 2874.45 2543.89 0.64 9.80 2543.89 0.31 5.52

tz6117 6117 5 2917.86* 2917.86 3021.76 2917.86 551.36 2917.86 1343.20 – 2917.86 1.92 28.64 2917.86 1.09 19.31
tz6117 6117 10 1902.12* 1902.12 9220.21 1902.12 371.38 1902.12 895.64 – 1902.12 3.94 41.14 1902.12 1.34 20.31
tz6117 6117 15 1527.98* 1527.98 29102.14 1529.38 737.43 1528.46 1158.97 – 1527.98 8.45 68.58 1527.98 2.48 22.41
tz611 6117 20 1278.30* 1278.30 20584.44 1278.62 1136.69 1279.30 1417.64 – 1278.30 4.07 32.00 1278.30 1.26 10.52
tz6117 6117 25 1152.05* 1152.05 294422.79 1153.16 947.31 1153.16 1168.50 – 1152.05 48.80 117.67 1152.05 16.12 62.53
tz6117 6117 50 776.21 N/A N/A 806.23 646.19 806.23 916.10 – 776.21 9.16 48.13 776.21 2.81 27.08
tz6117 6117 75 622.72 N/A N/A 663.53 594.17 663.74 729.12 – 622.72 31.89 67.43 622.72 11.32 38.59
tz6117 6117 100 529.67 N/A N/A 579.75 627.09 566.18 696.23 – 529.67 40.95 114.67 529.67 16.98 76.54
Avg. 17156.03 359.28 493.63 2.46 13.35
𝑝-value 1.00 6.50E−04 3.34E−03 7.81E−03 1.00

#better/#equal/#worse 0/21/0 13/11/0 9/15/0 8/0/0 0/24/0
Table 9
Computational results on sw24978, bm33708, and ch71009 datasets from world TSP.

Ins. 𝑛 𝑝 BKS TSA (Irawan
et al., 2016)

GMA (Irawan
et al., 2016)

Gon+(Garcia-
Diaz et al.,
2019)

VWTS (Zhang et al., 2020) VWDT

𝑓𝑏𝑒𝑠𝑡 CPU 𝑓𝑏𝑒𝑠𝑡 CPU 𝑓𝑏𝑒𝑠𝑡 𝑓𝑏𝑒𝑠𝑡 𝑓𝑎𝑣𝑔 CPU-𝑞∗ CPU Hit 𝑓𝑏𝑒𝑠𝑡 𝑓𝑎𝑣𝑔 CPU-𝑞∗ CPU Hit

sw24978 24978 25 1238.39 1335.99 8.76 1329.37 1319.13 1550.35 1238.39 1241.8 201.34 3623.82 9/20 1238.39 1238.39 78.84 603.13 20/20
sw24978 24978 50 846.22 929.61 504.10 925.71 1520.68 1088.45 847.11 848.88 360.43 2559.96 3/20 846.22 846.23 411.20 1293.70 14/20
sw24978 24978 75 680.89 759.16 745.61 759.02 1095.73 862.32 681.02 683.38 317.23 2344.5 5/20 680.89 682.08 459.22 1287.13 3/20
sw24978 24978 100 574.70 686.48 528.98 685.77 909.84 741.89 577.17 577.89 640.53 2470.29 2/20 574.7 575.02 260.95 1042.67 7/20

bm33708 33708 25 1114.18 1183.80 588.19 1183.80 851.62 1414.40 1117.79 1117.95 301.44 3344.73 8/20 1114.18 1114.18 347.94 1717.97 18/20
bm33708 33708 50 743.30 823.27 944.72 823.78 1087.10 851.31 744.05 744.52 521.32 3081.34 3/20 743.3 744.29 640.80 3369.85 10/20
bm33708 33708 75 584.29 686.75 624.19 683.94 1121.05 766.84 585.47 587.4 425.42 2083.8 2/20 584.29 587.38 312.64 2396.90 7/20
bm33708 33708 100 502.49 594.73 447.82 593.48 1848.85 649.14 503.87 504.8 592.24 2369.18 3/20 502.49 504.36 777.81 4957.81 2/20

ch71009 71009 25 4205.77 4430.15 6358.05 4428.72 7649.10 5608.06 4211.82 4213.87 546.52 3290.74 3/20 4205.77 4208.12 392.31 3452.54 7/20
ch71009 71009 50 2928.22 3109.67 6167.86 3107.56 7642.38 3641.98 2935.54 2938.01 679.53 6978.92 2/20 2928.22 2931.06 649.64 6286.64 3/20
ch71009 71009 75 2319.78 2554.32 6115.02 2554.63 7630.42 2985.92 2326.84 2330.31 643.25 8924.42 1/20 2319.78 2323.79 461.40 5865.34 3/20
ch71009 71009 100 2013.67 2170.69 6083.75 2168.97 6913.58 2524.63 2029.79 2048.62 703.53 16795.49 1/20 2013.67 2031.97 416.74 7412.43 2/20
Avg. 2426.42 3299.12 434.12 3307.17
𝑝-value 4.88E−04 4.88E−04 4.88E−04 3.35E−03 4.88E−04

#better/#equal/#worse 12/0/0 12/0/0 12/0/0 11/1/0 12/0/0
Table 10
Overall computational results on all massive TSP datasets.

Dataset Count CIK (Contardo et al., 2019) fCLH (Gaar and Sinnl, 2022) VWDT

#best #better CPU #best #better CPU #best CPU-𝑞∗ CPU

P2 42 42 0 23.80 42 0 3.27 42 12.85 204.25
P3 42 42 0 43.76 42 0 8.76 42 18.91 392.59
P5 42 42 0 171.88 42 0 62.80 42 48.59 512.64
P10 42 42 0 1642.73 29 13 771.87 42 52.58 587.45
P15 42 36 7 17174.12 17 25 1194.03 42 46.50 650.12
P20 42 29 13 33031.00 10 32 1391.29 42 53.77 657.98
P25 42 21 21 46943.70 8 34 1469.47 42 58.17 681.28
P30 42 18 24 53204.92 8 34 1474.28 42 60.58 825.52
10

Computers and Operations Research 160 (2023) 106373Q. Zhang et al.
Table 11
Computational results on the improved massive TSP instances.

Ins. 𝑝 LB CIK
(Contardo
et al., 2019)

fCLH (Gaar
and Sinnl,
2022)

VWDT

𝑓𝑏𝑒𝑠𝑡 CPU 𝑓𝑏𝑒𝑠𝑡 CPU 𝑓𝑏𝑒𝑠𝑡 CPU-𝑞∗ CPU
fyg28534 15 142 151 TL1 168 TL2 144 13.41 229.24
pla33810 15 110019 126933 TL1 137325 TL2 111811 74.24 1222.89
bby34656 15 155 164 TL1 189 TL2 156 214.63 1080.14
pba38478 15 160 163 TL1 208 TL2 161 38.53 1604.11
pla85900 15 142938 159484 TL1 185853 TL2 147969 230.64 4021.31
usa115475 15 5288 5419 TL1 6259 TL2 5361 105.86 4325.54
ara238025 15 441 458 TL1 511 TL2 455 450.23 5405.43
rl11849 20 2119 2273 TL1 2629 TL2 2139 63.73 759.07
usa13509 20 44740 46719 TL1 56610 TL2 44744 97.23 820.30
d15112 20 2581 2717 TL1 3359 TL2 2615 53.36 455.12
d18512 20 912 969 TL1 1218 TL2 925 35.45 526.78
fyg28534 20 118 130 TL1 154 TL2 122 87.42 2027.45
pla33810 20 91302 106076 TL1 118855 TL2 94884 58.65 2785.04
bby34656 20 128 138 TL1 159 TL2 132 77.15 822.20
pba38478 20 136 148 TL1 175 TL2 140 234.43 1017.09
ch71009 20 4798 5250 TL1 5868 TL2 4842 206.77 2611.83
pla85900 20 119643 136984 TL1 163300 TL2 127046 139.77 2910.99
sra104815 20 232 236 TL1 294 TL2 233 138.67 1422.17
usa115475 20 4453 4747 TL1 5855 TL2 4691 108.26 2053.14
ara238025 20 372 407 TL1 466 TL2 396 441.54 4957.25
pcb3038 25 433 470 TL1 545 TL2 438 2.55 10.42
rl5915 25 1823 1916 TL1 2201 TL2 1825 6.39 43.83
tz6117 25 1152 1258 TL1 1426 TL2 1152 7.22 28.66
ei8246 25 429 461 TL1 532 TL2 433 5.95 19.86
fi10639 25 1103 1173 TL1 1400 TL2 1106 39.25 272.97
rl11849 25 1838 2099 TL1 2506 TL2 1864 29.02 390.99
usa13509 25 38150 40578 TL1 46954 TL2 38238 54.64 648.30
brd14051 25 703 737 TL1 843 TL2 709 83.72 385.89
d15112 25 2233 2447 TL1 2877 TL2 2299 69.05 670.41
d18512 25 795 881 TL1 1029 TL2 817 34.33 424.39
sw24978 25 1233 1285 TL1 1567 TL2 1238 60.38 503.61
fyg28534 25 102 112 TL1 133 TL2 107 58.54 688.61
bm33708 25 1106 1140 TL1 1358 TL2 1114 207.92 926.10
pla33810 25 81800 88861 TL1 108074 TL2 84095 283.15 2491.55
bby34656 25 112 128 TL1 144 TL2 117 63.53 1643.76
pba38478 25 117 134 TL1 160 TL2 123 101.41 1379.08
ch71009 25 4145 4321 TL1 5491 TL2 4206 258.95 2008.95
pla85900 25 107527 124693 TL1 145695 TL2 117019 21.32 2911.59
sra104815 25 206 216 TL1 241 TL2 211 202.18 4046.17
usa115475 25 3808 4453 TL1 5347 TL2 4262 143.53 2243.14
ara238025 25 319 357 TL1 393 TL2 340 404.60 5064.79
pr2392 30 1379 1471 TL1 1765 TL2 1387 0.59 1.33
pcb3038 30 386 412 TL1 508 TL2 394 1.23 2.50
rl5915 30 1624 1853 TL1 2210 TL2 1666 2.31 65.57
rl5934 30 1658 1812 TL1 2116 TL2 1665 3.06 57.41
tz6117 30 1025 1142 TL1 1304 TL2 1027 3.84 22.35
ei8246 30 386 412 TL1 508 TL2 393 3.26 55.23
fi10639 30 974 1017 TL1 1251 TL2 984 17.67 148.76
rl11849 30 1649 1855 TL1 2255 TL2 1716 106.13 969.27
usa13509 30 34471 37306 TL1 45591 TL2 35283 67.76 763.77
brd14051 30 620 668 TL1 812 TL2 632 21.31 253.73
mo14185 30 732 767 TL1 936 TL2 737 73.93 355.40
d15112 30 2009 2254 TL1 2662 TL2 2084 201.46 982.72
d18512 30 712 786 TL1 963 TL2 735 104.22 740.40
sw24978 30 1096 1215 TL1 1514 TL2 1114 141.41 950.27
fyg28534 30 93 108 TL1 122 TL2 97 120.13 501.66
bm33708 30 968 1065 TL1 1221 TL2 982 56.86 1008.13
pla33810 30 71480 83187 TL1 95203 TL2 76000 440.41 3910.27
bby34656 30 102 133 TL1 137 TL2 106 37.86 1902.96
pba38478 30 107 125 TL1 149 TL2 112 54.62 2411.74
ch71009 30 3724 4098 TL1 4947 TL2 3897 81.69 3077.36
pla85900 30 93871 114244 TL1 127681 TL2 100809 31.15 3605.74
sra104815 30 186 206 TL1 216 TL2 187 290.71 2718.68
usa115475 30 3391 3874 TL1 4770 TL2 3727 141.43 3430.31
ara238025 30 288 368 TL1 386 TL2 322 430.53 5922.92
Avg. TL1 TL2 114.48 1564.90
11

Computers and Operations Research 160 (2023) 106373Q. Zhang et al.

m

Table 12
Comparison of VWDT, VWDT-A, VWDT-S, and VW on instances pcb3038 with 10 − 500 centers.

Ins. 𝑝 𝑓𝑏𝑒𝑠𝑡 VWDT VWDT-A VWDT-S VW

𝑇𝑏𝑒𝑠𝑡 𝑇𝑎𝑣𝑔 Hit 𝑇𝑏𝑒𝑠𝑡 𝑇𝑎𝑣𝑔 Hit 𝑇𝑏𝑒𝑠𝑡 𝑇𝑎𝑣𝑔 Hit 𝑇𝑏𝑒𝑠𝑡 𝑇𝑎𝑣𝑔 Hit

pcb3038 10 728.54 0.06 0.51 20/20 0.96 3.59 20/20 0.15 1.75 20/20 0.08 1.40 20/20
pcb3038 20 493.04 0.22 1.41 20/20 1.09 9.18 20/20 0.06 7.05 20/20 0.16 37.73 20/20
pcb3038 30 393.50 0.18 0.89 20/20 1.16 4.39 20/20 0.31 1.70 20/20 0.21 2.84 20/20
pcb3038 40 336.42 1.16 18.23 20/20 2.66 69.35 20/20 0.41 101.77 20/20 4.05 98.44 20/20
pcb3038 50 297.83 4.18 33.85 20/20 32.62 127.60 20/20 4.38 151.37 20/20 40.01 565.25 12/20
pcb3038 100 206.31 5.82 95.79 20/20 8.50 149.90 18/20 2.58 432.34 17/20 0.41 582.88 9/20
pcb3038 150 164.40 4.87 22.92 20/20 3.44 49.15 20/20 13.66 198.61 20/20 5.94 413.96 16/20
pcb3038 200 140.06 10.88 101.48 20/20 13.14 236.24 16/20 77.09 281.27 17/20 550.70 865.07 2/20
pcb3038 250 122.25 9.77 15.56 20/20 5.23 17.77 20/20 1.35 47.34 20/20 12.80 122.25 20/20
pcb3038 300 115.00 0.55 18.43 20/20 0.23 14.02 20/20 3.71 32.86 20/20 0.67 21.99 20/20
pcb3038 350 104.68 0.22 0.97 20/20 0.17 1.02 20/20 0.53 1.11 20/20 0.19 1.53 20/20
pcb3038 400 96.88 0.62 1.08 20/20 1.86 2.67 20/20 0.63 1.61 20/20 0.13 1.70 20/20
pcb3038 450 88.55 0.40 0.49 20/20 1.46 2.05 20/20 0.42 1.31 20/20 0.78 3.90 20/20
pcb3038 500 84.58 0.27 0.55 20/20 0.15 1.20 20/20 0.15 0.65 20/20 0.08 0.79 20/20

Avg. 2.80 22.30 100% 5.19 49.15 97.86% 7.53 90.05 97.86% 44.01 194.27 85.36%
o
w
1
m
a
i
v

6

s
i
b
t
t

VWTS (Zhang et al., 2020), and our proposed VWDT on 36 instances
from World TSP. From Tables 8 and 9, we can observe that for the
15 open instances (tz6117 with 𝑝 = 50, 75, 100, sw24978, bm33708
and ch71009) whose optimality is unknown, VWDT improves the best
results on the remaining 11 instances (sw24978 with 𝑝 = 50, 75, 100,
bm33708 and ch71009) on the basis that VWTS has already improved
the best results for 4 instances (tz6117 with 𝑝 = 50, 75, 100, sw24978
with 𝑝 = 25), and matches the optimal solutions for the remaining
ones. For Table 9, the small 𝑝-values (<0.05) indicate that there are
significant differences between our best results and those of all the
reference algorithms. It is noteworthy that VWDT keeps a 100% success
rate on these instances with less than 10,000 vertices (mu1979, ca4663,
tz6117). Overall, VWDT outperforms TSA, GMA, Gon+, and VWTS
algorithms in terms of both the solution quality and computational
efficiency.

5.4.2. Massive TSP set
Table 10 shows the overall results on the massive set obtained by

CIK (Contardo et al., 2019), fCLH (Gaar and Sinnl, 2022), and our
VWDT. Column Count shows the number of instances in each dataset.
Column #best presents the number of instances where the correspond-
ing algorithms match the best known results among all the algorithms.
It can be observed that VWDT obtains the best known results for all
the instances, while no reference algorithm can obtain such as overall
outcome. Compared to fCLH, our VWDT obtains 138 better, 198 equal,
and no worse solutions. Compared with the best performing algorithm
CIK, VWDT obtains 65 better, 272 equal, and no worse solutions. When
the number of centers is small (𝑝 ≤ 5), our VWDT takes slightly longer
time than CIK and fCLH to obtain the best known results. However,
as the number of centers increases (𝑝 > 5), the advantage of VWDT
over CIK and fCLH becomes obvious in terms of solution quality and
computational efficiency. Table 11 shows the details of the 65 improved
instances.6 TL1 and TL2 are the running time limits of CIK and fCLH,
which are 24 h and 1800 s, respectively. Column LB gives the lower
bound of each instance obtained by exact algorithms in the literature.
Specifically, for instance tz6117 𝑝 = 25, the upper bound obtained by
VWDT is equal to the lower bound, i.e., VWDT closes this instance.

In sum, these statistics show that our VWDT is highly effective and
efficient for solving large scale 𝑝-center problem instances. Especially,
when the number of centers is large, its performance for obtaining
high-quality upper bounds is much better than the exact algorithms.

6 We report the detailed results of all instances in the supplemental
aterials.
12

a

6. Analysis and discussions

6.1. Importance of hybrid double-tabu strategy

In our VWDT, the hybrid double-tabu strategy plays an important
role for stably producing high-quality results. In order to verify the
effectiveness of the hybrid double-tabu strategy, we conduct experi-
ments on the hard large dataset pcb3038 from TSPLIB to compare the
original version of VWDT with three simplified versions named VW,
VWDT-S, and VWDT-A, respectively. These four versions share the same
components except for the configuration of the tabu strategies. VW uses
a local search without any tabu strategy. VWDT-S only employs the
solution-based tabu strategy, and VWDT-A only enables the attribute-
based tabu strategy. For each algorithm, we perform 20 independent
runs on the pcb3038 dataset. For each instance, the time limit for each
subproblem corresponding to each covering radius is 900 s.

Table 12 reports the experimental results produced by VWDT, VW,
VWDT-S, and VWDT-A on pcb3038 dataset. Columns 𝑇𝑏𝑒𝑠𝑡 and 𝑇𝑎𝑣𝑔
present the best and average CPU time to match the best known result
𝑓𝑏𝑒𝑠𝑡, respectively. Column Hit shows the success rate for reaching
the best known result 𝑓𝑏𝑒𝑠𝑡 under the given time limits. Furthermore,
Fig. 2 illustrates the distributions of the computational time consumed
by VWDT, VW, VWDT-A, and VWDT-S on six representative instances
(pcb3038 with 𝑝 = 40, 50, 100, 150, 200, 250) in a box-and-whisker
plot.

Table 12 and Fig. 2 demonstrate that the hybrid double-tabu strat-
egy outperforms other three strategies. In detail, Table 12 shows that
VWDT-A and VWDT-S fail to always match the best known solutions
on 2 instances (pcb3038 with 𝑝 = 100, 200), and VW fails to do so on 4
nes (pcb3038 with 𝑝 = 50, 100, 150, 200). Moreover, for the instances
ith 𝑝 = 100 and 𝑝 = 200, the hit rates of VWDT-A and VWDT-S are not
00%, while the hit rates of VW are even less than 50%. Thus, VWDT is
ore stable than VW, VWDT-A and VWDT-S for it has a higher hit rate

nd a better average deviation from the best found solution. As shown
n Fig. 2, the hybrid double-tabu strategy obviously outperforms other
ariants on all 6 instances in terms of computational efficiency.

.2. Effectiveness of the vertex weighting technique

As the tabu search proceeds, more solutions are recorded in the
olution-based tabu list, which may narrow the feasible solution space
nto disconnected areas and may hinder the search for trajectory-
ased metaheuristics. In contrast, the vertex weighting technique helps
he search to jump out of the local optima by altering the objec-
ive function, which plays a significant role in the proposed VWDT

lgorithm.

Computers and Operations Research 160 (2023) 106373Q. Zhang et al.

w
m
t
c
𝑝

Fig. 3. Effectiveness of vertex weighting technique and performance of different ratios of initial weight to increment.
v
o

In order to justify the importance of the vertex weighting technique,
e conduct experiments on 12 hard instances to compare the perfor-
ance of VWDT with its simplified versions. Specifically, we disable

he vertex weighting technique to obtain a new DT algorithm, and then
ompare it with the original VWDT on large instances pcb3038 with
= 30, 40, 50, 100, 150, 200, 300, 400 and tz6117 with 𝑝 = 25, 50, 75, 100.

DT works almost the same as VWDT, except that the vertex weights of
DT are always one during the entire search procedure, i.e., lines 11–13
in Algorithm 1 are disabled.

In addition, we also analyze how different vertex weights updating
schemes affect the effectiveness of the VWDT algorithm. The ratio of
the initial weight to the increment controls the aggressiveness of the
search. If the increment is too large, the penalty for the uncovered
vertices will grow steeply, which makes the uncovered vertices be
13

t

quickly covered in subsequent search. If the increment is too small, it
may take a long time to reshape the landscape of the solution space
and get out of the basin around the local optima. In order to find the
best value of the increment, we test five ratios, which are 100:1, 10:1,
1:1, 1:10 and 1:100. Note that the weight scale is 1:1 in the version
of the proposed VWDT algorithm, as described in Algorithm 1. For a
fair comparison, we use the same random seed in each run, so that
they start from the same initial solution on each instance, respectively.
Fig. 3 illustrates the evolution of the number of uncovered vertices for
the variants of VWDT with the ratios 100:1, 10:1, 1:1, 1:10, 1:100 and
DT as the search proceeds. Each point (𝑥, 𝑦) means that there are 2𝑦 −1
ertices which are not covered by any center at 10𝑥 iteration. We can
bserve that, DT can obtain better infeasible solutions than VWDT in

he initial stage. However, as discussed above, the tabu search simply

Computers and Operations Research 160 (2023) 106373Q. Zhang et al.

i
V
𝑝
r
c
l
o
i
o
i
v
w

7

h
(
d
a
s
r
l
r
h
t
t
t
t
e
a

b
a
f

prohibits a candidate center from being a center, instead of directly
preventing a vertex from being uncovered. One may imagine that, in
extreme conditions, the search may never consider covering some hard-
to-cover clients at all. As expected, VWDT outperforms DT after 104

terations on all 12 instances. Fig. 3 shows that all the five variants of
WDT outperform DT on all the 12 instances, and the gaps expand as
gets larger. According to Fig. 3, in the initial stage, the higher the

atio of the initial weight to the increment is, the faster the algorithm
onverges. However, their convergence rate gradually decreases in the
ater stage of the search. VWDT with weight scale 1:1 obtains better
verall results than other weight scales for 10 out of the 12 instances
n terms of the rate of convergence, while obtaining slightly worse
r comparable results to one or two algorithms for the remaining 2
nstances (Fig. 3(k) and 3(l)), which highlights the effectiveness of the
ertex weighting strategy. These observations confirm that the vertex
eighting is essential for VWDT to obtain the competitive results.

. Conclusion

In this paper, we study the 𝑝-center problem, and design a meta-
euristic algorithm, called vertex weighting-based double-tabu search
VWDT) for solving this classical and challenging NP-hard problem. We
ecompose the 𝑝-center problem into a series of decision subproblems,
nd solve each one of them by combining the hybrid double-tabu
earch with the vertex weighting technique. It improves the best known
esults on 84 out of 510 widely used benchmark instances in the
iterature, while matching the best records in the literature for all the
emaining ones. The experimental results demonstrate that VWDT is
ighly competitive in terms of the solution quality and the computa-
ional efficiency. In addition, we carried out experiments to analyze
he essential ingredients of our VWDT, such as the vertex weighting
echnique and double-tabu strategy. The experiments show that these
wo components play significant roles in reaching a trade-off between
xploration and exploitation of the search, thus making VWDT powerful
nd robust.

The success of solving the 𝑝-center problem inspires us that, it would
e appealing to investigate the combination of the solution-based and
ttribute-based tabu strategies with the weighting technique in the
uture. As these strategies are independent of the 𝑝-center problem, it

seems promising to apply them to other optimization problems.

CRediT authorship contribution statement

Qingyun Zhang: Methodology, Software, Validation, Formal anal-
ysis, Investigation, Resources, Writing – original draft, Visualization.
Zhipeng Lü: Conceptualization, Methodology, Supervision. Zhouxing
Su: Conceptualization, Methodology, Writing – original draft, Writing –
review & editing, Project administration. Chumin Li: Writing – review
& editing.

Data availability

The benchmark data have already been publicly available on ORLIB
and TSPLIB.

Acknowledgments

This work was supported in part by the National Natural Science
Foundation of China (NSFC) under Grant 72101094 and the Spe-
cial Project for Knowledge Innovation of Hubei Province under Grant
2022013301015175.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
14

at https://doi.org/10.1016/j.cor.2023.106373.
References

Al-Khedhairi, A., Salhi, S., 2005. Enhancements to two exact algorithms for solving the
vertex p-center problem. J. Math. Model. Algorithms 4 (2), 129–147.

Amiri, A., 2006. Designing a distribution network in a supply chain system: Formulation
and efficient solution procedure. European J. Oper. Res. 171 (2), 567–576.

Beasley, J.E., 1990. OR-library: distributing test problems by electronic mail. J. Oper.
Res. Soc. 41 (11), 1069–1072.

Cai, S., Su, K., Luo, C., Sattar, A., 2013. NuMVC: An efficient local search algorithm
for minimum vertex cover. J. Artificial Intelligence Res. 46, 687–716.

Cai, S., Su, K., Sattar, A., 2011. Local search with edge weighting and configuration
checking heuristics for minimum vertex cover. Artificial Intelligence 175 (9–10),
1672–1696.

Calik, H., Tansel, B.C., 2013. Double bound method for solving the p-center location
problem. Comput. Oper. Res. 40 (12), 2991–2999.

Caruso, C., Colorni, A., Aloi, L., 2003. Dominant, an algorithm for the p-center problem.
European J. Oper. Res. 149 (1), 53–64.

Church, R., ReVelle, C., 1974. The maximal covering location problem. Pap. Reg. Sci.
32 (1), 101–118.

Contardo, C., Iori, M., Kramer, R., 2019. A scalable exact algorithm for the vertex
p-center problem. Comput. Oper. Res. 103, 211–220.

Daskin, M.S., 2000. A new approach to solving the vertex p-center problem to
optimality: Algorithm and computational results. Commun. Oper. Res. Soc. Jpn.
45 (9), 428–436.

Daskin, M.S., 2013. Center problems. In: Daskin, M.S. (Ed.), Network and Discrete
Location: Models, Algorithms, and Applications, Second Edition. John Wiley & Sons,
Ltd, pp. 193–234.

Elloumi, S., Labbé, M., Pochet, Y., 2004. A new formulation and resolution method for
the p-center problem. INFORMS J. Comput. 16 (1), 84–94.

Ferone, D., Festa, P., Napoletano, A., Resende, M.G., 2017. A new local search for the
p-center problem based on the critical vertex concept. In: 11th Int. Conf. Learn.
Intell. Optim. LION 11, Springer, pp. 79–92.

Floyd, R.W., 1962. Algorithm 97: shortest path. Commun. ACM 5 (6), 345.
Gaar, E., Sinnl, M., 2022. A scaleable projection-based branch-and-cut algorithm for

the p-center problem. European J. Oper. Res. 303 (1), 78–98.
Gao, C., Yao, X., Weise, T., Li, J., 2015. An efficient local search heuristic with row

weighting for the unicost set covering problem. European J. Oper. Res. 246 (3),
750–761.

Garcia-Diaz, J., Menchaca-Mendez, R., Menchaca-Mendez, R., Hernández, S.P.,
Pérez-Sansalvador, J.C., Lakouari, N., 2019. Approximation algorithms for the
vertex k-center problem: Survey and experimental evaluation. IEEE Access 7,
109228–109245.

Garcia-Diaz, J., Sanchez-Hernandez, J.J., Menchaca-Mendez, R., Menchaca-Méndez, R.,
2017. When a worse approximation factor gives better performance: A 3-
approximation algorithm for the vertex k-center problem. J. Heuristics 23 (5),
349–366.

Glover, F., 1989. Tabu search-part I. ORSA J. Comput. 1 (3), 190–206.
Gonzalez, T.F., 1985. Clustering to minimize the maximum intercluster distance.

Theoret. Comput. Sci. 38, 293–306.
Hakimi, S.L., 1964. Optimum locations of switching centers and the absolute centers

and medians of a graph. Oper. Res. 12 (3), 450–459.
Hochbaum, D.S., Shmoys, D.B., 1985. A best possible heuristic for the k-center problem.

Math. Oper. Res. 10 (2), 180–184.
Ilhan, T., Ozsoy, F., Pinar, M., 2002. An Efficient Exact Algorithm for the Vertex

p-Center Problem and Computational Experiments for Different Set Covering
Subproblems. Technical Report, Bilkent University, Department of Industrial
Engineering.

Irawan, C.A., Salhi, S., Drezner, Z., 2016. Hybrid meta-heuristics with VNS and
exact methods: application to large unconditional and conditional vertex p-centre
problems. J. Heuristics 22 (4), 507–537.

Kariv, O., Hakimi, S.L., 1979. An algorithmic approach to network location problems.
I: The p-centers. SIAM J. Appl. Math. 37 (3), 513–538.

Lai, X., Hao, J.K., Glover, F., Lü, Z., 2018. A two-phase tabu-evolutionary algorithm
for the 0–1 multidimensional knapsack problem. Inform. Sci. 436, 282–301.

Liao, C., Ting, C., 2018. A novel integer-coded memetic algorithm for the set k-cover
problem in wireless sensor networks. IEEE Trans. Cybern. 48 (8), 2245–2258.

Liu, X., Fang, Y., Chen, J., Su, Z., Li, C., Lü, Z., 2020. Effective approaches to solve
P-center problem via set covering and SAT. IEEE Access 8, 161232–161244.

López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T., 2016. The
irace package: Iterated racing for automatic algorithm configuration. Oper. Res.
Perspect. 3, 43–58.

Luo, C., Su, K., Cai, S., 2012. Improving local search for random 3-SAT using
quantitative configuration checking. In: Proc. 20th Eur. Conf. Artif. Intell.. ECAI
2012, IOS Press, pp. 570–575.

Martinich, J.S., 1988. A vertex-closing approach to the p-center problem. Naval Res.
Logist. 35 (2), 185–201.

Minieka, E., 1970. The m-center problem. SIAM Rev. 12 (1), 138–139.
Mladenović, N., Brimberg, J., Hansen, P., A.Moreno-Pérez, J., 2007. The p-median

problem: A survey of metaheuristic approaches. European J. Oper. Res. 179 (3),
927–939.

https://doi.org/10.1016/j.cor.2023.106373
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb1
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb1
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb1
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb2
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb2
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb2
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb3
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb3
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb3
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb4
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb4
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb4
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb5
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb5
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb5
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb5
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb5
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb6
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb6
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb6
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb7
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb7
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb7
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb8
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb8
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb8
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb9
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb9
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb9
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb10
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb10
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb10
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb10
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb10
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb11
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb11
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb11
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb11
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb11
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb12
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb12
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb12
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb13
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb13
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb13
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb13
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb13
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb14
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb15
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb15
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb15
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb16
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb16
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb16
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb16
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb16
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb17
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb17
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb17
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb17
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb17
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb17
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb17
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb18
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb18
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb18
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb18
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb18
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb18
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb18
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb19
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb20
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb20
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb20
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb21
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb21
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb21
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb22
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb22
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb22
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb23
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb23
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb23
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb23
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb23
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb23
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb23
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb24
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb24
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb24
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb24
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb24
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb25
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb25
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb25
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb26
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb26
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb26
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb27
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb27
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb27
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb28
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb28
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb28
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb29
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb29
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb29
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb29
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb29
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb30
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb30
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb30
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb30
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb30
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb31
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb31
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb31
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb32
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb33
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb33
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb33
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb33
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb33

Computers and Operations Research 160 (2023) 106373Q. Zhang et al.
Mladenović, N., Labbé, M., Hansen, P., 2003. Solving the p-center problem with tabu
search and variable neighborhood search. Networks 42 (1), 48–64.

Pullan, W., 2008. A memetic genetic algorithm for the vertex p-center problem. Evol.
Comput. 16 (3), 417–436.

Reinelt, G., 1991. TSPLIB–A traveling salesman problem library. ORSA J. Comput. 3
(4), 376–384.

Rigas, E.S., Ramchurn, S.D., Bassiliades, N., 2018. Algorithms for electric vehicle
scheduling in large-scale mobility-on-demand schemes. Artificial Intelligence 262,
248–278.

Robič, B., Mihelič, J., 2005. Solving the k-center problem efficiently with a dominating
set algorithm. J. Comput. Inform. Technol. 13 (3), 225–234.

Salhi, S., Al-Khedhairi, A., 2010. Integrating heuristic information into exact methods:
The case of the vertex p-centre problem. J. Oper. Res. Soc. 61 (11), 1619–1631.

Shmoys, D.B., 1995. Computing near-optimal solutions to combinatorial optimization
problems. Comb. Optim. 20, 355–397.

Toregas, C., Swain, R., ReVelle, C., Bergman, L., 1971. The location of emergency
service facilities. Oper. Res. 19 (6), 1363–1373.

Voudouris, C., Tsang, E.P.K., 2003. Guided local search. In: Glover, F., Kochen-
berger, G.A. (Eds.), Handbook of Metaheuristics. Springer US, Boston, MA, pp.
185–218. http://dx.doi.org/10.1007/0-306-48056-5_7.
15
Wang, Y., Lü, Z., Su, Z., 2021. A two-phase intensification tabu search algorithm for
the maximum min-sum dispersion problem. Comput. Oper. Res. 135, 105427.

Wang, Y., Wu, Q., Glover, F., 2017. Effective metaheuristic algorithms for the minimum
differential dispersion problem. European J. Oper. Res. 258 (3), 829–843.

Xia, L., Yin, W., Dong, J., Wu, T., Xie, M., Zhao, Y., 2010. A hybrid nested partitions
algorithm for banking facility location problems. IEEE Trans. Autom. Sci. Eng. 7
(3), 654–658.

Yin, A.H., Zhou, T.Q., Ding, J.W., Zhao, Q.J., Lv, Z.P., 2017. Greedy randomized
adaptive search procedure with path-relinking for the vertex p-center problem. J.
Comput. Sci. Tech. 32 (6), 1319–1334.

Zhang, X., Li, B., Cai, S., Wang, Y., 2021. Efficient local search based on dynamic
connectivity maintenance for minimum connected dominating set. J. Artificial
Intelligence Res. 71, 89–119.

Zhang, Q., Lü, Z., Su, Z., Li, C., Fang, Y., Ma, F., 2020. Vertex weighting-based tabu
search for p-center problem. In: Proc. 29th Int. Joint Conf. Artif. Intell. IJCAI 2020,
pp. 1481–1487.

http://refhub.elsevier.com/S0305-0548(23)00237-X/sb34
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb34
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb34
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb35
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb35
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb35
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb36
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb36
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb36
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb37
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb37
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb37
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb37
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb37
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb38
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb38
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb38
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb39
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb39
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb39
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb40
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb40
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb40
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb41
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb41
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb41
http://dx.doi.org/10.1007/0-306-48056-5_7
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb43
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb43
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb43
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb44
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb44
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb44
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb45
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb45
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb45
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb45
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb45
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb46
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb46
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb46
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb46
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb46
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb47
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb47
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb47
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb47
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb47
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb48
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb48
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb48
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb48
http://refhub.elsevier.com/S0305-0548(23)00237-X/sb48

	A vertex weighting-based double-tabu search algorithm for the classical p-center problem
	Introduction
	Related works
	Problem Description
	Vertex Weighting-based Double-Tabu Search
	General Framework
	Initialization
	Weighting Technique
	Neighborhood Structure and Evaluation
	Hybrid Double-Tabu Strategy

	Experimental Results and Comparisons
	Experimental Protocol
	Reference Algorithms
	Parameter setting
	Computational Results
	Three well-known sets
	Massive TSP set

	Analysis and Discussions
	Importance of Hybrid Double-Tabu Strategy
	Effectiveness of the Vertex Weighting Technique

	Conclusion
	CRediT authorship contribution statement
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References

